
Multidimensional Access Methods
VOLKER GAEDE

IC-Parc, Imperial College, London

AND

OLIVER GÜNTHER

Humboldt-Universität, Berlin

Search operations in databases require special support at the physical level. This is
true for conventional databases as well as spatial databases, where typical search
operations include the point query (find all objects that contain a given search
point) and the region query (find all objects that overlap a given search region).
More than ten years of spatial database research have resulted in a great variety
of multidimensional access methods to support such operations. We give an
overview of that work. After a brief survey of spatial data management in general,
we first present the class of point access methods, which are used to search sets of
points in two or more dimensions. The second part of the paper is devoted to
spatial access methods to handle extended objects, such as rectangles or polyhedra.
We conclude with a discussion of theoretical and experimental results concerning
the relative performance of various approaches.

Categories and Subject Descriptors: H.2.2 [Database Management]: Physical
Design—access methods; H.2.4 [Database Management]: Systems; H.2.8
[Database Management]: Database Applications—spatial databases and GIS;
H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval—
search process, selection process

General Terms: Design, Experimentation, Performance

Additional Key Words and Phrases: Data structures, multidimensional access
methods

1. INTRODUCTION

With an increasing number of computer
applications that rely heavily on multi-
dimensional data, the database commu-
nity has recently devoted considerable
attention to spatial data management.
Although the main motivation origi-

nated in the geosciences and mechani-
cal CAD, the range of possible applica-
tions has expanded to areas such as
robotics, visual perception, autonomous
navigation, environmental protection,
and medical imaging [Günther and
Buchmann 1990].

The range of interpretation given to

This work was partially supported by the German Research Society (DFG/SFB 373) and by the ESPRIT
Working Group CONTESSA (8666).
Authors’ address: Institut für Wirtschaftsinformatik, Humboldt-Universität zu Berlin, Spandauer Str.
1, 10178 Berlin, Germany; email: ^{gaede,guenther}@wiwi.hu-berlin.de&.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication, and its date appear, and notice is given that copying is by
permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and / or a fee.
© 1998 ACM 0360-0300/98/0600–0170 $05.00

ACM Computing Surveys, Vol. 30, No. 2, June 1998

the term spatial data management is
just as broad as the range of applica-
tions. In VLSI CAD and cartography,
this term refers to applications that rely
mostly on two-dimensional or layered
two-dimensional data. VLSI data are
usually represented by rectilinear poly-
lines or polygons whose edges are iso-
oriented, that is, parallel to the coordi-
nate axes. Typical operations include
intersection and geometric routing
[Shekhar and Liu 1995]. Cartographic
data are also two-dimensional with
points, lines, and regions as basic prim-
itives. In contrast to VLSI CAD, how-
ever, the shapes are often characterized
by extreme irregularities. Common op-
erations include spatial searches and
map overlay, as well as distance-related
operations. In mechanical CAD, on the
other hand, data objects are usually
three-dimensional solids. They may be
represented in a variety of data formats,
including cell decomposition schemes,
constructive solid geometry (CSG), and
boundary representations [Kemper and
Wallrath 1987]. Yet other applications
emphasize the processing of unanalyzed
images, such as X-rays and satellite im-
agery, from which features are ex-
tracted. In those areas, the terms spa-

tial database and image database are
sometimes even used interchangeably.

Strictly speaking, however, spatial
databases contain multidimensional
data with explicit knowledge about ob-
jects, their extent, and their position in
space. The objects are usually repre-
sented in some vector-based format, and
their relative positions may be explicit
or implicit (i.e., derivable from the in-
ternal representation of their absolute
positions). Image databases often place
less emphasis on data analysis. They
provide storage and retrieval for unana-
lyzed pictorial data, which are typically
represented in some raster format.
Techniques developed for the storage
and manipulation of image data can be
applied to other media as well, such as
infrared sensor signals or sound.

In this survey we assume that the
goal is to manipulate analyzed multidi-
mensional data and that unanalyzed
images are handled only as the source
from which spatial data can be derived.
The challenge for the developers of a
spatial database system lies not so
much in providing yet another collection
of special-purpose data structures.
Rather, one has to find abstractions and
architectures to implement generic sys-
tems, that is, to build systems with ge-
neric spatial data-management capabil-
ities that can be tailored to the
requirements of a particular application
domain. Important issues in this con-
text include the handling of spatial rep-
resentations and data models, multidi-
mensional access methods, and pictorial
or spatial query languages and their
optimization.

This article is a survey of multidimen-
sional access methods to support search
operations in spatial databases. Figure
1, which was inspired by a similar
graph by Lu and Ooi [1993], gives a first
overview of the diversity of existing
multidimensional access methods. The
goal is not to describe all of these struc-
tures, but to discuss the most prominent
ones, to present possible taxonomies,
and to establish references to other lit-
erature.

CONTENTS

1. INTRODUCTION
2. ORGANIZATION OF SPATIAL DATA

2.1 What Is Special About Spatial?
2.2 Definitions and Queries

3. BASIC DATA STRUCTURES
3.1 One-Dimensional Access Methods
3.2 Main Memory Structures

4. POINT ACCESS METHODS
4.1 Multidimensional Hashing
4.2 Hierarchical Access Methods
4.3 Space-Filling Curves for Point Data

5. SPATIAL ACCESS METHODS
5.1 Transformation
5.2 Overlapping Regions
5.3 Clipping
5.4 Multiple Layers

6. COMPARATIVE STUDIES
7. CONCLUSIONS

Multidimensional Access Methods • 171

ACM Computing Surveys, Vol. 30, No. 2, June 1998

Several shorter surveys have been
published previously in various Ph.D.
theses such as Ooi [1990], Kolovson
[1990], Oosterom [1990], and Schiwietz
[1993]. Widmayer [1991] gives an over-
view of work published before 1991.
Like the thesis by Schiwietz, however,
his survey is available only in German.
Samet’s books [1989, 1990] present the
state of the art until 1989. However,
they primarily cover quadtrees and re-
lated data structures. Lomet [1991] dis-
cusses the field from a systems-oriented
point of view.

The remainder of the article is orga-
nized as follows. Section 2 discusses
some basic properties of spatial data
and their implications for the design
and implementation of spatial data-
bases. Section 3 gives an overview of
some traditional data structures that

had an impact on the design of multidi-
mensional access methods. Sections 4
and 5 form the core of this survey, pre-
senting a variety of point access meth-
ods (PAMs) and spatial access methods
(SAMs), respectively. Some remarks
about theoretical and experimental
analyses are contained in Section 6, and
Section 7 concludes the article.

2. ORGANIZATION OF SPATIAL DATA

2.1 What Is Special About Spatial?

To obtain a better understanding of the
requirements in spatial database sys-
tems, we first discuss some basic prop-
erties of spatial data. First, spatial data
have a complex structure. A spatial
data object may be composed of a single
point or several thousands of polygons,

Figure 1. History of multidimensional access methods.

172 • V. Gaede and O. Günther

ACM Computing Surveys, Vol. 30, No. 2, June 1998

arbitrarily distributed across space. It
is usually not possible to store collec-
tions of such objects in a single rela-
tional table with a fixed tuple size. Sec-
ond, spatial data are often dynamic.
Insertions and deletions are interleaved
with updates, and data structures used
in this context have to support this dy-
namic behavior without deteriorating
over time. Third, spatial databases tend
to be large. Geographic maps, for exam-
ple, typically occupy several gigabytes
of storage. The integration of secondary
and tertiary memory is therefore essen-
tial for efficient processing [Chen et al.
1995]. Fourth, there is no standard al-
gebra defined on spatial data, although
several proposals have been made in the
past [Egenhofer 1989; Güting 1989;
Scholl and Voisard 1989; Güting and
Schneider 1993]. This means in particu-
lar that there is no standardized set of
base operators. The set of operators de-
pends heavily on the given application
domain, although some operators (such
as intersection) are more common than
others. Fifth, many spatial operators
are not closed. The intersection of two
polygons, for example, may return any
number of single points, dangling edges,
or disjoint polygons. This is particularly
relevant when operators are applied
consecutively. Sixth, although the com-
putational costs vary among spatial da-
tabase operators, they are generally
more expensive than standard rela-
tional operators.

An important class of geometric oper-
ators that needs special support at the
physical level is the class of spatial
search operators. Retrieval and update
of spatial data are usually based not
only on the value of certain alphanu-
meric attributes but also on the spatial
location of a data object. A retrieval
query on a spatial database often re-
quires the fast execution of a geometric
search operation such as a point or re-
gion query. Both operations require fast
access to those data objects in the data-
base that occupy a given location in
space.

To support such search operations,

one needs special multidimensional ac-
cess methods. The main problem in the
design of such methods, however, is
that there exists no total ordering
among spatial objects that preserves
spatial proximity. In other words, there
is no mapping from two- or higher-di-
mensional space into one-dimensional
space such that any two objects that are
spatially close in the higher-dimen-
sional space are also close to each other
in the one-dimensional sorted sequence.

This makes the design of efficient ac-
cess methods in the spatial domain
much more difficult than in traditional
databases, where a broad range of effi-
cient and well-understood access meth-
ods is available. Examples for such one-
dimensional access methods (also called
single key structures, although that
term is somewhat misleading) include
the B-tree [Bayer and McCreight 1972]
and extendible hashing [Fagin et al.
1979]; see Section 3.1 for a brief discus-
sion. A popular approach to handling
multidimensional search queries con-
sists of the consecutive application of
such single key structures, one per di-
mension. Unfortunately, this approach
can be very inefficient [Kriegel 1984].
Since each index is traversed indepen-
dently of the others, we cannot exploit
the possibly high selectivity in one di-
mension to narrow down the search in
the remaining dimensions. In general,
there is no easy and obvious way to
extend single key structures in order to
handle multidimensional data.

There is a variety of requirements
that multidimensional access methods
should meet, based on the properties of
spatial data and their applications
[Robinson 1981; Lomet and Salzberg
1989; Nievergelt 1989]:

(1) Dynamics. As data objects are in-
serted and deleted from the data-
base in any given order, access
methods should continuously keep
track of the changes.

(2) Secondary/tertiary storage man-
agement. Despite growing main
memories, it is often not possible to

Multidimensional Access Methods • 173

ACM Computing Surveys, Vol. 30, No. 2, June 1998

hold the complete database in main
memory. Therefore, access methods
need to integrate secondary and ter-
tiary storage in a seamless manner.

(3) Broad range of supported opera-
tions. Access methods should not
support just one particular type of
operation (such as retrieval) at the
expense of other tasks (such as de-
letion).

(4) Independence of the input data and
insertion sequence. Access methods
should maintain their efficiency
even when input data are highly
skewed or the insertion sequence is
changed. This point is especially
important for data that are distrib-
uted differently along the various
dimensions.

(5) Simplicity. Intricate access meth-
ods with many special cases are
often error-prone to implement and
thus not sufficiently robust for
large-scale applications.

(6) Scalability. Access methods should
adapt well to database growth.

(7) Time efficiency. Spatial searches
should be fast. A major design goal
is to meet the performance charac-
teristics of one-dimensional B-trees:
first, access methods should guar-
antee a logarithmic worst-case
search performance for all possible
input data distributions regardless
of the insertion sequence and sec-
ond, this worst-case performance
should hold for any combination of
the d attributes.

(8) Space efficiency. An index should
be small in size compared to the
data to be addressed and therefore
guarantee a certain storage utiliza-
tion.

(9) Concurrency and recovery. In mod-
ern databases where multiple us-
ers concurrently update, retrieve,
and insert data, access methods
should provide robust techniques
for transaction management with-
out significant performance penal-
ties.

(10) Minimum impact. The integration
of an access method into a data-
base system should have minimum
impact on existing parts of the sys-
tem.

2.2 Definitions and Queries

We have already introduced the term
multidimensional access methods to de-
note the large class of access methods
that support searches in spatial data-
bases and are the subject of this survey.
Within this class, we distinguish be-
tween point access methods (PAMs) and
spatial access methods (SAMs). Point
access methods have primarily been de-
signed to perform spatial searches on
point databases (i.e., databases that
store only points). The points may be
embedded in two or more dimensions,
but they do not have a spatial exten-
sion. Spatial access methods, however,
can manage extended objects, such as
lines, polygons, or even higher-dimen-
sional polyhedra. In the literature, one
often finds the term spatial access
method referring to what we call multi-
dimensional access method. Other terms
used for this purpose include spatial
index or spatial index structure.

We generally assume that the given
objects are embedded in d-dimensional
Euclidean space Ed or a suitable sub-
space thereof. In this article, this space
is also referred to as the universe or
original space. Any point object stored
in a spatial database has a unique loca-
tion in the universe, defined by its d
coordinates. Unless the distinction is
essential, we use the term point both for
locations in space and for point objects
stored in the database. Note, however,
that any point in space can be occupied
by several point objects stored in the
database.

A (convex) d-dimensional polytope P
in Ed is defined to be the intersection of
some finite number of closed halfspaces
in Ed, such that the dimension of the
smallest affine subspace containing P is
d. If a [Ed 2 {0} and c [E1 then the
(d 2 1)-dimensional set H(a, c) 5 {x [

174 • V. Gaede and O. Günther

ACM Computing Surveys, Vol. 30, No. 2, June 1998

Ed : x z a 5 c} defines a hyperplane in
Ed. A hyperplane H(a, c) defines two
closed halfspaces: the positive halfspace
1 z H(a, c) 5 {x [Ed : x z a $ c}, and
the negative halfspace 21 z H(a, c) 5
{x [Ed : x z a # c}. A hyperplane
H(a, c) supports a polytope P if H(a, c)
ù P Þ À and P # 1 z H(a, c), that is, if
H(a, c) embeds parts of P’s boundary. If
H(a, c) is any hyperplane supporting P
then P ù H(a, c) is a face of P. The
faces of dimension 1 are called edges;
those of dimension 0 vertices.

By forming the union of some finite
number of polytopes Q1, . . . , Qn, we
obtain a (d-dimensional) polyhedron Q
in Ed that is not necessarily convex.
Following the intuitive understanding
of polyhedra, we require that the Qi(i 5
1, . . . , n) be connected. Note that this
still allows for polyhedra with holes.
Each face of Q is either the face of some
Qi, or a fraction thereof, or the result of
the intersection of two or more Qi. Each
polyhedron P divides the points in space
into three subsets that are mutually
disjoint: its interior, its boundary, and
its exterior.

Following usual conventions, we use
the terms line and polyline to denote a
one-dimensional polyhedron and the
terms polygon and region to denote a
two-dimensional polyhedron. We fur-
ther assume that for each k(0 # k # d),

the set of k-dimensional polyhedra
forms a data type, which leads us to the
common collection of spatial data types
{Point, Line, Region, . . .}. Combined
types sometimes also occur. An object o
in a spatial database is usually defined
by several nonspatial attributes and one
attribute of some spatial data type. This
spatial attribute describes the object’s
spatial extent o.G. In the spatial data-
base literature, the terms geometry,
shape, and spatial extension are often
used instead of spatial extent. For the
description of o.G one finds the terms
shape descriptor, shape description,
shape information, and geometric de-
scription, among others.

Indices often perform more efficiently
when handling simple entries of the
same size. One therefore often abstracts
from the actual shape of a spatial object
before inserting it into an index. This
can be achieved by approximating the
original data object with a simpler
shape, such as a bounding box or a
sphere. Given a minimum bounding in-
terval Ii(o) 5 [li, ui] (li, ui [E1) de-
scribing the extent of the spatial object
o along dimension i, the d-dimensional
minimum bounding box (MBB) is de-
fined by Id(o) 5 I1(o) 3 I2(o) 3 . . . 3
Id(o).

An index may administer only the
MBB of each object, together with a

Figure 2. Multistep spatial query processing [Brinkhoff et al. 1994].

Multidimensional Access Methods • 175

ACM Computing Surveys, Vol. 30, No. 2, June 1998

pointer to the object’s database entry
(object ID or object reference). With this
design, the index produces only a set of
candidate solutions (Figure 2). For each
candidate obtained during this filter
step, we have to decide whether the
MBB is sufficient to guarantee that the
object itself satisfies the search predi-
cate. In those cases, the object can be
added directly to the query result
(dashed line). However, there are often
cases where the MBB does not prove
sufficient. In a refinement step we then
must retrieve the exact shape informa-
tion from secondary memory and test it
against the predicate. If the predicate
evaluates to true, the object is added to
the query result; otherwise we have a
false drop.

Another way of obtaining simple in-
dex entries is to represent the shape of
each data object as the geometric union
of simpler shapes (e.g., convex polygons
with a bounded number of vertices).
This approach is called decomposition.

We have mentioned the term effi-
ciency several times so far without giv-
ing a formal definition. In the case of
space efficiency, this can easily be done:
the goal is to minimize the number of
bytes occupied by the index. For time
efficiency the situation is not so clear.
Elapsed time is obviously what the user
cares about, but one should keep in
mind that the corresponding measure-
ments greatly depend on implementa-
tion details, hardware utilization, and
other external factors. In the literature,
one therefore often finds a seemingly
more objective performance measure:
the number of disk accesses performed
during a search. This approach, which
has become popular with the B-tree, is
based on the assumption that most
searches are I/O-bound rather than
CPU-bound—an assumption that is not
always true in spatial data manage-
ment, however. In applications where
objects have complex shapes, the refine-
ment step can incur major CPU costs
and change the balance with I/O [Gaede
1995b; Hoel and Samet 1995]. Of
course, one should keep the minimiza-

tion of the number of disk accesses in
mind as one design goal. Practical eval-
uations, however, should always give
some information on elapsed times and
the conditions under which they were
achieved.

As noted previously, in contrast to
relational databases, there exists nei-
ther a standard spatial algebra nor a
standard spatial query language. The
set of operators strongly depends on the
given application domain, although
some operators (such as intersection)
are generally more common than oth-
ers. Queries are often expressed by
some extension of SQL that allows ab-
stract data types to represent spatial
objects and their associated operators
[Roussopoulos and Leifker 1984; Egen-
hofer 1994]. The result of a query is
usually a set of spatial data objects. In
the remainder of this section, we give a
formal definition of several of the more
common spatial database operators.
Figures 3 through 8 give some concrete
examples.

Query 1 (Exact Match Query EMQ,
Object Query). Given an object o9 with
spatial extent o9.G # Ed, find all objects
o with the same spatial extent as o9:

EMQ~o9! 5 $ouo9.G 5 o.G%.

Query 2 (Point Query PQ). Given a
point p [Ed, find all objects o overlap-

Figure 3. Point query.

176 • V. Gaede and O. Günther

ACM Computing Surveys, Vol. 30, No. 2, June 1998

ping p:

PQ~ p! 5 $oup ù o.G 5 p%.

The point query can be regarded as a
special case of several of the following
queries, such as the intersection query,
the window query, or the enclosure
query.

Query 3 (Window Query WQ, Range
Query). Given a d-dimensional interval
Id 5 [l1, u1] 3 [l2, u2] 3 . . . 3 [ld, ud],
find all objects o having at least one
point in common with Id:

WQ~Id! 5 $ouId ù o.G Þ À%.

The query implies that the window is
iso-oriented; that is, its faces are paral-
lel to the coordinate axes. A more gen-
eral variant is the region query that
permits search regions to have arbitrary
orientations and shapes.

Query 4 (Intersection Query IQ, Re-
gion Query, Overlap Query). Given an
object o9 with spatial extent o9.G # Ed,
find all objects o having at least one
point in common with o9:

IQ~o9! 5 $ouo9.G ù o.G Þ À%.

Query 5 (Enclosure Query EQ). Given
an object o9 with spatial extent o9.G #

Figure 4. Window query.

Figure 5. Intersection query.

Figure 6. Enclosure query.

Figure 7. Containment query.

Multidimensional Access Methods • 177

ACM Computing Surveys, Vol. 30, No. 2, June 1998

Ed, find all objects o enclosing o9:

EQ~o9! 5 $ou~o9.G ù o.G! 5 o9.G%.

Query 6 (Containment Query CQ).
Given an object o9 with spatial extent
o9.G # Ed, find all objects o enclosed by
o9:

CQ~o9! 5 $ou~o9.G ù o.G! 5 o.G%.

The enclosure and the containment
query are duals of each other. They are
both more restrictive formulations of
the intersection query by specifying the
result of the intersection to be one of the
two inputs.

Query 7 (Adjacency Query AQ). Given
an object o9 with spatial extent o9.G #
Ed, find all objects o adjacent to o9:

AQ~o9! 5 $ouo.G ù o9.G Þ À

` o9.G° ù o.G° 5 À}.

Here o9.G° and o.G° denote the interi-
ors of the spatial extents o9.G and o.G,
respectively.

Query 8 (Nearest-Neighbor Query
NNQ). Given an object o9 with spatial
extent o9.G # Ed, find all objects o

having a minimum distance from o9:

NNQ~o9! 5 $ou@o0 : dist~o9.G, o.G!

dist~o9.G, o0.G!}.

The distance between extended spatial
data objects is usually defined as the
distance between their closest points.
Common distance functions for points
include the Euclidean and the Manhat-
tan distance.

Besides spatial selections, as exempli-
fied by Queries 1 through 8, the spatial
join is one of the most important spatial
operations and can be defined as follows
[Günther 1993]:

Query 9 (Spatial Join). Given two col-
lections R and S of spatial objects and a
spatial predicate u, find all pairs of ob-
jects (o, o9) [R 3 S where u(o.G, o9.G)
evaluates to true:

R ”“u S 5 $~o, o9!uo [R ` o9

[S ` u ~o.G, o9.G!}.

As for the spatial predicate u, a brief
survey of the literature1 yields a wide
variety of possibilities, including

intersects[
contains[
is_enclosed_by[
distance[Qq, with Q [{5, #, ,, $, .}

and q [E1

northwest[
adjacent[.

A closer inspection of these spatial pred-
icates shows that the intersection join
R ”“intersects S plays a crucial role for
the computation in virtually all these
cases [Gaede and Riekert 1994]. For
predicates such as contains, encloses, or
adjacent, for example, the intersection
join is an efficient filter that yields a set
of candidate solutions typically much

1 See Orenstein [1986], Becker [1992], Rotem
[1991], Günther [1993], Brinkhoff et al. [1993a],
Gaede and Riekert [1994], Brinkhoff [1994], Lo
and Ravishankar [1994], Aref and Samet [1994],
Papadias et al. [1995] and Günther et al. [1998].

Figure 8. Adjacency query.

178 • V. Gaede and O. Günther

ACM Computing Surveys, Vol. 30, No. 2, June 1998

smaller than the Cartesian product
R 3 S.

3. BASIC DATA STRUCTURES

3.1 One-Dimensional Access Methods

Classical one-dimensional access meth-
ods are an important foundation for al-
most all multidimensional access meth-
ods. Although the related surveys by
Knott [1975] and Comer [1979] are
somewhat dated, they represent good
coverage of the different approaches. In
practice, the most common one-dimen-
sional structures include linear hashing
[Litwin 1980; Larson 1980], extendible
hashing [Fagin et al. 1979], and the
B-tree [Bayer and McCreight 1972]. Hi-
erarchical access methods such as the
B-tree are scalable and behave well in
the case of skewed input; they are
nearly independent of the distribution
of the input data. This is not necessarily
true for hashing techniques, whose per-
formance may degenerate depending on
the given input data and hash function.
This problem is aggravated by the use
of order-preserving hash functions
[Orenstein 1983; Garg and Gotlieb
1986] that try to preserve neighborhood
relationships between data items in or-
der to support range queries. As a re-
sult, highly skewed data keep accumu-
lating at a few selected locations in
image space.

3.1.1 Linear Hashing [Larson 1980;
Litwin 1980]. Linear hashing divides
the universe [A, B) of possible hash val-
ues into binary intervals of size (B 2
A)/2k or (B 2 A)/2k11 for some k $ 0.
Each interval corresponds to a bucket,
that is, a collection of records stored on
a disk page. t [[A, B) is a pointer that
separates the smaller intervals from the
larger ones: all intervals of size (B 2
A)/2k are to the left of t and all intervals
of size (B 2 A)/2k11 are to the right of t.
If a bucket reaches its capacity due to
an insertion, the interval [t, t 1 (B 2
A)/2k) is split into two subintervals of
equal size, and t is advanced to the next

large interval remaining. Note that the
split interval need not be the same in-
terval as the one that caused the split;
consequently, there is no guarantee that
the split relieves the bucket in question
from its overload. If an interval contains
more objects than bucket capacity per-
mits, the overload is stored on an over-
flow page, which is linked to the origi-
nal page. When t 5 B, the file has
doubled and all intervals have the same
length (B 2 A)/2k11. In this case we
reset the pointer t to A and resume the
split procedure for the smaller inter-
vals.

3.1.2 Extendible Hashing [Fagin et
al. 1979]. As does linear hashing, ex-
tendible hashing organizes the data in
binary intervals, here called cells. Over-
flow pages are avoided in extendible
hashing by using a central directory.
Each cell has an index entry in that
directory; it initially corresponds to one
bucket. If during an insertion a bucket
at maximal depth exceeds its maximum
capacity, all cells are split into two. New
index entries are created and the direc-
tory doubles in size. Since each bucket
was not at full capacity before the split,
it may now be possible to fit more than
one cell in the same bucket. In that
case, adjacent cells are regrouped in
data regions and stored on the same
disk page. In the case of skewed data
this may lead to a situation where nu-
merous directory entries exist for the
same data region (and therefore the
same disk page). Even in the case of
uniformly distributed data, the average
directory size is Q(n111/b) and therefore
superlinear [Flajolet 1983]. Here b de-
notes the bucket size and n is the num-
ber of index entries. Exact match
searches take no more than two page
accesses: one for the directory and one
for the bucket with the data. This is
more than the best-case performance of
linear hashing, but better than the
worst case.

Besides the potentially poor space uti-
lization of the index, extendible hashing
also suffers from a nonincremental

Multidimensional Access Methods • 179

ACM Computing Surveys, Vol. 30, No. 2, June 1998

growth of the index due to the doubling
steps. To address these problems,
Lomet [1983] proposed a technique
called bounded-index extendible hash-
ing. In this proposal, the index grows as
in extendible hashing until its size
reaches a predetermined maximum;
that is, the index size is bounded. Once
this limit is reached while inserting new
items, bounded-index extendible hash-
ing starts doubling the data bucket size
rather than the index size.

3.1.3 The B-Tree [Bayer and Mc-
Creight 1972]. Other than hashing
schemes, the B-tree and its variants
[Comer 1979] organize the data in a
hierarchical manner. B-trees are bal-
anced trees that correspond to a nesting
of intervals. Each node n corresponds to
a disk page D(n) and an interval I(n). If
n is an interior node then the intervals
I(ni) corresponding to the immediate de-
scendants of n are mutually disjoint
subsets of I(n). Leaf nodes contain
pointers to data items; depending on the
type of B-tree, interior nodes may do so
as well. B-trees have an upper and
lower bound for the number of descen-
dants of a node. The lower bound pre-
vents the degeneration of trees and
leads to an efficient storage utilization.
Nodes whose number of descendants
drops below the lower bound are deleted
and their contents distributed among
the adjacent nodes at the same tree
level. The upper bound follows from the
fact that each tree node corresponds to
exactly one disk page. If during an in-
sertion a node reaches its capacity, it is
split in two. Splits may propagate up
the tree. As the size of the intervals
depends on the given data (and the in-
sertion sequence), the B-tree is an adap-
tive data structure. For uniformly dis-
tributed data, however, extendible as
well as linear hashing outperform the
B-tree on the average for exact match
queries, insertions, and deletions.

3.2 Main Memory Structures

Early multidimensional access methods
did not take into account paged second-

ary memory and are therefore less
suited for large spatial databases. In
this section, we review several of these
fundamental data structures, which are
adapted and incorporated in numerous
multidimensional access methods. To il-
lustrate the methods, we introduce a
small scenario that we use as a running
example throughout this survey. The
scenario, depicted in Figure 9, contains
10 points pi and 10 polygons ri, ran-
domly distributed in a finite two-dimen-
sional universe. To represent polygons,
we often use their centroids ci (not pic-
tured) or their minimum bounding
boxes (MBBs) mi. Note that the quality
of the MBB approximation varies con-
siderably. The MBB m8, for example,
provides a fairly tight fit, whereas r5 is
only about half as large as its MBB m5.

3.2.1 The k-d-Tree [Bentley 1975,
1979]. One of the most prominent d-
dimensional data structures is the k-d-
tree. The k-d-tree is a binary search tree
that represents a recursive subdivision
of the universe into subspaces by means
of (d 2 1)-dimensional hyperplanes.
The hyperplanes are iso-oriented, and
their direction alternates among the d
possibilities. For d 5 3, for example,
splitting hyperplanes are alternately
perpendicular to the x-, y-, and z-axes.
Each splitting hyperplane has to con-
tain at least one data point, which is
used for its representation in the tree.
Interior nodes have one or two descen-
dants each and function as discrimina-
tors to guide the search. Searching and
insertion of new points are straightfor-
ward operations. Deletion is somewhat
more complicated and may cause a reor-
ganization of the subtree below the data
point to be deleted.

Figure 10 shows a k-d-tree for the
running example. Because the tree can
only handle points, we represent the
polygons by their centroids ci. The first
splitting line is the vertical line crossing
c3. We therefore store c3 in the root of
the corresponding k-d-tree. The next
splits occur along horizontal lines cross-

180 • V. Gaede and O. Günther

ACM Computing Surveys, Vol. 30, No. 2, June 1998

ing p10 (for the left subtree) and c7 (for
the right subtree), and so on.

One disadvantage of the k-d-tree is
that the structure is sensitive to the
order in which the points are inserted.
Another one is that data points are scat-
tered all over the tree. The adaptive
k-d-tree [Bentley and Friedman 1979]
mitigates these problems by choosing a
split such that one finds about the same
number of elements on both sides. Al-
though the splitting hyperplanes are
still parallel to the axes, they need not
contain a data point and their directions

need not be strictly alternating any-
more. As a result, the split points are
not part of the input data; all data
points are stored in the leaves. Interior
nodes contain the dimension (e.g., x or
y) and the coordinate of the correspond-
ing split. Splitting is continued recur-
sively until each subspace contains only
a certain number of points. The adap-
tive k-d-tree is a rather static structure;
it is obviously difficult to keep the tree
balanced in the presence of frequent
insertions and deletions. The structure
works best if all the data are known a

Figure 9. Running example.

Figure 10. k-d-tree.

Multidimensional Access Methods • 181

ACM Computing Surveys, Vol. 30, No. 2, June 1998

priori and if updates are rare. Figure 11
shows an adaptive k-d-tree for the run-
ning example. Note that the tree still
depends on the order of insertion.

Another variant of the k-d-tree is the
bintree [Tamminen 1984]. This struc-
ture partitions the universe recursively
into d-dimensional boxes of equal size
until each one contains only a certain
number of points. Even though this
kind of partitioning is less adaptive, it
has several advantages, such as the im-
plicit knowledge of the partitioning hy-
perplanes. In the remainder of this arti-
cle, we encounter several other
structures based on this kind of parti-
tioning.

A disadvantage common to all k-d-
trees is that for certain distributions no
hyperplane can be found that splits the
data points evenly [Lomet and Salzberg
1989]. By introducing a more flexible
partitioning scheme, the following BSP-
tree avoids this problem completely.

3.2.2 The BSP-Tree [Fuchs et al.
1980, 1983]. Splitting the universe only
along iso-oriented hyperplanes is a se-
vere restriction in the schemes pre-
sented so far. Allowing arbitrary orien-
tations gives more flexibility to find a
hyperplane that is well suited for the
split. A well-known example for such a
method is the binary space partitioning
(BSP)-tree. Like k-d-trees, BSP-trees
are binary trees that represent a recur-
sive subdivision of the universe into

subspaces by means of (d 2 1)-dimen-
sional hyperplanes. Each subspace is
subdivided independently of its history
and of the other subspaces. The choice
of the partitioning hyperplanes depends
on the distribution of the data objects in
a given subspace. The decomposition
usually continues until the number of
objects in each subspace is below a
given threshold.

The resulting partition of the uni-
verse can be represented by a BSP-tree
in which each hyperplane corresponds
to an interior node of the tree and each
subspace corresponds to a leaf. Each
leaf stores references to those objects
that are contained in the corresponding
subspace. Figure 12 shows a BSP-tree
for the running example with no more
than two objects per subspace.

In order to perform a point query, we
insert the search point into the root of
the tree and determine on which side of
the corresponding hyperplane it is lo-
cated. Next, we insert the point into the
corresponding subtree and proceed re-
cursively until we reach a leaf of the
tree. Finally, we examine the data ob-
jects in the corresponding subspace to
see whether they contain the search
point. The range search algorithm is a
straightforward generalization.

BSP-trees can adapt well to different
data distributions. However, they are
typically not balanced and may have
very deep subtrees, which has a nega-

Figure 11. Adaptive k-d-tree.

182 • V. Gaede and O. Günther

ACM Computing Surveys, Vol. 30, No. 2, June 1998

tive impact on the tree performance.
BSP-trees also have higher space re-
quirements, since storing an arbitrary
hyperplane per split occupies more stor-
age space than a simple discriminator,
which is typically just a real number.

3.2.3 The BD-Tree [Ohsawa and
Sakauchi 1983]. The BD-tree is a bi-
nary tree representing a subdivision of
the data space into interval-shaped re-
gions. Each of those regions is encoded
in a bit string and associated with one
of the BD-tree nodes. Here, these bit
strings are called DZ-expressions; they
are also known as Peano codes, ST_Mor-
tonNumber, or z-values (cf. Section
5.1.2).

Given a region R, one computes the
corresponding DZ-expression as follows.
For simplicity we restrict this presenta-
tion to the two-dimensional case; we
also assume that the first subdividing
hyperplane is a vertical line. If R lies to
the left of that line, the first bit of the
corresponding DZ-expression is 0; other-
wise it is 1. In the next step, we subdi-
vide the subspace containing R by a
horizontal line. If R lies below that line,
the second bit of the DZ-expression is 0,
otherwise it is 1. As this decomposition
progresses, we obtain one bit per split-
ting line. Bits at odd positions refer to
vertical lines and bits at even positions
to horizontal lines, which explains why
this scheme is often referred to as bit
interleaving.

To avoid the storage utilization prob-
lems that are often associated with a
strictly regular partitioning, the BD-
tree employs a more flexible splitting
policy. Here one can split a node by
making an interval-shaped excision
from the corresponding region. The two
child nodes of the node to be split will
then have different interpretations: one
represents the excision; the other one
represents the remainder of the original
region. Note that the remaining region
is no longer interval-shaped. With this
policy, the BD-tree can guarantee that,
after node splitting, each of the data
buckets contains at least one third of
the original entries.

Figure 13 shows a BD-tree for the
running example. An excision is always
represented by the left child of the node
that was split.

For an exact match we first compute
the full bit-interleaved prefix of the
search record. Starting from the root,
we recursively compare this prefix with
the stored DZ-expressions of each inter-
nal node. If it matches, we follow the
corresponding link; otherwise we follow
the other link until we reach the leaf
level of the BD-tree. More sophisticated
algorithms were proposed later by Dan-
damudi and Sorenson [1986, 1991].

3.2.4 The Quadtree. The quadtree
with its many variants is closely related
to the k-d-tree. For an extensive discus-
sion of this structure, see Samet [1984,

Figure 12. BSP-tree.

Multidimensional Access Methods • 183

ACM Computing Surveys, Vol. 30, No. 2, June 1998

1990a,b]. Although the term quadtree
usually refers to the two-dimensional
variant, the basic idea applies to an
arbitrary d. Like the k-d-tree, the
quadtree decomposes the universe by
means of iso-oriented hyperplanes. An
important difference, however, is the
fact that quadtrees are not binary trees
anymore. In d dimensions, the interior
nodes of a quadtree have 2d descen-
dants, each corresponding to an inter-
val-shaped partition of the given sub-
space. These partitions do not have to
be of equal size, although that is often
the case. For d 5 2, for example, each
interior node has four descendants, each
corresponding to a rectangle. These
rectangles are typically referred to as
the NW, NE, SW, and SE (northwest,
etc.) quadrants. The decomposition into
subspaces is usually continued until the
number of objects in each partition is
below a given threshold. Quadtrees are
therefore not necessarily balanced; sub-
trees corresponding to densely popu-
lated regions may be deeper than oth-
ers.

Searching in a quadtree is similar to
searching in an ordinary binary search
tree. At each level, one has to decide
which of the four subtrees need be in-
cluded in the future search. In the case
of a point query, typically only one sub-
tree qualifies, whereas for range queries
there are often several. We repeat this
search step recursively until we reach
the leaves of the tree.

Finkel and Bentley [1974] proposed

one of the first quadtree variants: the
point quadtree, essentially a multidi-
mensional binary search tree. The point
quadtree is constructed consecutively by
inserting the data points one by one.
For each point, we first perform a point
search. If we do not find the point in the
tree, we insert it into the leaf node
where the search has terminated. The
corresponding partition is divided into
2d subspaces with the new point at the
center. The deletion of a point requires
the restructuring of the subtree below
the corresponding quadtree node. A
simple way to achieve this is to reinsert
all points into the subtree. Figure 14
shows a two-dimensional point quadtree
for the running example.

Another popular variant is the region
quadtree [Samet 1984]. Region quadtrees
are based on a regular decomposition of
the universe; that is, the 2d subspaces
resulting from a partition are always of
equal size. This greatly facilitates
searches. For the running example, Fig-
ure 15 shows how region quadtrees can
be used to represent sets of points. Here
the threshold for the number of points
in any given subspace was set to one. In
more complex versions of the region
quadtree, such as the PM quadtree
[Samet and Webber 1985], it is also
possible to store polygonal data directly.
PM quadtrees divide the quadtree re-
gions (and the data objects in them)
until they contain only a small number
of polygon edges or vertices. These
edges or vertices (which together form

Figure 13. BD-tree.

184 • V. Gaede and O. Günther

ACM Computing Surveys, Vol. 30, No. 2, June 1998

an exact description of the data objects)
are then attached to the leaves of the
tree. Another class of quadtree struc-
tures has been designed for the manage-
ment of collections of rectangles; see
Samet [1988] for a survey.

4. POINT ACCESS METHODS

The multidimensional data structures
presented in the previous section do not
take secondary storage management
into account explicitly. They were origi-
nally designed for main memory appli-
cations where all the data are available
without accessing the disk. Despite
growing main memories, this is of
course not always the case. In many
spatial database applications, such as
geography, the amount of data to be
managed is notoriously large. One can

certainly use main memory structures
for data that reside on disk, but their
performance is often considerably below
the optimum because there is no control
over how the operating system performs
the disk accesses. The access methods
presented in this and the following sec-
tion have been designed with secondary
storage management in mind. Their op-
erations are closely coordinated with
the operating system to ensure that
overall performance is optimized.

As mentioned before, we first present
a selection of point access methods.
Usually, the points in the database are
organized in a number of buckets, each
of which corresponds to a disk page and
to some subspace of the universe. The
subspaces (often called data regions,
bucket regions, or simply regions, even

Figure 14. Point quadtree.

Figure 15. Region quadtree.

Multidimensional Access Methods • 185

ACM Computing Surveys, Vol. 30, No. 2, June 1998

though their dimension may be greater
than two) need not be rectilinear, al-
though they often are. The buckets are
accessed by means of a search tree or
some d-dimensional hash function.

The grid file [Nievergelt et al. 1984],
for example, uses a directory and a grid-
like partition of the universe to answer
an exact match query with exactly two
disk accesses. Furthermore, there are
multidimensional hashing schemes
[Tamminen 1982; Kriegel and Seeger
1986, 1988], multilevel grid files
[Whang and Krishnamurthy 1985; Hut-
flesz et al. 1988b], and hash trees [Ouk-
sel 1985; Otoo 1985], which organize the
directory as a tree structure. Tree-based
access methods are usually a generali-
zation of the B-tree to higher dimen-
sions, such as the k-d-B-tree [Robinson
1981] or the hB-tree [Lomet and Salz-
berg 1989].

In the remainder of this section, we
first discuss the approaches based on
hashing, followed by hierarchical (tree-
based) methods, and space-filling
curves. This classification is hardly un-
ambiguous, especially in the presence of
an increasing number of hybrid ap-
proaches that attempt to combine the
advantages of several different tech-
niques. Our approach resembles the
classification of Samet [1990], who dis-

tinguishes between hierarchical meth-
ods (point/region quadtrees, k-d-trees,
range trees) and bucket methods (grid
file, EXCELL). His discussion of the
former is primarily in the context of
main memory applications. Our presen-
tation focuses throughout on structures
that take secondary storage manage-
ment into account.

Another interesting taxonomy has
been proposed by Seeger and Kriegel
[1990], who classify point access meth-
ods by the properties of the bucket re-
gions (Table 1). First, they may be pair-
wise disjoint or they may have mutual
overlaps. Second, they may have the
shape of an interval (box) or be of some
arbitrary polyhedral shape. Third, they
may cover the complete universe or just
those parts that contain some data ob-
jects. This taxonomy results in eight
classes, four of which are populated by
existing access methods.

4.1 Multidimensional Hashing

Although there is no total order for ob-
jects in two- and higher-dimensional
space that completely preserves spatial
proximity, there have been numerous
attempts to construct hashing functions
that preserve proximity at least to some
extent. The goal of all these heuristics is

Table 1. Classification of PAMs Following Seeger and Kriegel [1990]

186 • V. Gaede and O. Günther

ACM Computing Surveys, Vol. 30, No. 2, June 1998

that objects located close to each other
in original space should be likely to be
stored close together on the disk. This
could contribute substantially to mini-
mizing the number of disk accesses per
range query. We begin our presentation
with several structures based on ex-
tendible hashing. Structures based on
linear hashing are discussed in Section
4.1.5. The discussion of two hybrid
methods, the BANG file and the buddy
tree, is postponed until Section 4.2.

4.1.1 The Grid File (Nievergelt et al.
1981]. As a typical representative of an
access method based on hashing, we
first discuss the grid file and some of its
variants.2 The grid file superimposes a

d-dimensional orthogonal grid on the
universe. Because the grid is not neces-
sarily regular, the resulting cells may
be of different shapes and sizes. A grid
directory associates one or more of these
cells with data buckets, which are
stored on one disk page each. Each cell
is associated with one bucket, but a
bucket may contain several adjacent
cells. Since the directory may grow
large, it is usually kept on secondary
storage. To guarantee that data items
are always found with no more than two
disk accesses for exact match queries,
the grid itself is kept in main memory,
represented by d one-dimensional ar-
rays called scales.

Figure 16 shows a grid file for the
running example. We assume bucket ca-
pacity to be four data points. The center
of the figure shows the directory with

2 See Hinrichs [1985], Ouksel [1985], Whang and
Krishnamurthy [1985], Six and Widmayer [1988],
and Blanken et al. [1990].

Figure 16. Grid file.

Multidimensional Access Methods • 187

ACM Computing Surveys, Vol. 30, No. 2, June 1998

scales on the x- and y-axes. The data
points are displayed in the directory for
demonstration purposes only; they are
not, of course, stored there. In the lower
left part, four cells are combined into a
single bucket, represented by four
pointers to a single page. There are thus
four directory entries for the same page,
which illustrates a well-known problem
of the grid file: it suffers from a super-
linear growth of the directory even for
data that are uniformly distributed
[Regnier 1985; Widmayer 1991]. The
bucket region containing the point c5
could have been merged with one of the
neighboring buckets for better storage
utilization. We present various merging
strategies later, when we discuss the
deletion of data points.

To answer an exact match query, one
first uses the scales to locate the cell
containing the search point. If the ap-
propriate grid cell is not in main mem-
ory, one disk access is necessary. The
loaded cell contains a reference to the
page where possibly matching data can
be found. Retrieving this page may re-
quire another disk access. Altogether,
no more than two page accesses are
necessary to answer this query. For a
range query, one must examine all cells
that overlap the search region. After
eliminating duplicates, one fetches the
corresponding data pages into memory
for more detailed inspection.

To insert a point, one first performs
an exact match query to locate the cell
and the data page ni where the entry
should be inserted. If there is sufficient
space left on ni, the new entry is in-
serted. If not, we have to distinguish
two cases, depending on the number of
grid cells that point to the data page
where the new data item is to be in-
serted. If there are several, one checks
whether an existing hyperplane stored
in the scales can be used for splitting
the data page successfully. If so, a new
data page is allocated and the data
points are distributed accordingly
among the data pages. If none of the
existing hyperplanes is suitable, or if
only one grid cell points to the data

page in question, a splitting hyperplane
H is introduced and a new data page nj
is allocated. The new entry and the en-
tries of the original page ni are redis-
tributed among ni and nj, depending on
their location relative to H. H is in-
serted into the corresponding scale; all
cells that intersect H are split accord-
ingly. Splitting is therefore not a local
operation and can lead to superlinear
directory growth even for uniformly dis-
tributed data [Regnier 1985; Freeston
1987; Widmayer 1991].

Deletion is not a local operation ei-
ther. With the deletion of an entry, the
storage utilization of the corresponding
data page may drop below the given
threshold. Depending on the current
partitioning of space, it may then be
possible to merge this page with a
neighbor page and to drop the partition-
ing hyperplane from the corresponding
scale. Depending on the implementation
of the grid directory, merging may re-
quire a complete directory scan [Hin-
richs 1985]. Hinrichs discusses several
methods for finding candidates with
which a given data bucket can merge,
including the neighbor system and the
multidimensional buddy system. The
neighbor system allows merging two ad-
jacent regions if the result is a rectan-
gular region again. In the buddy sys-
tem, two adjacent regions can be
merged provided that the joined region
can be obtained by a regular binary
subdivision of the universe. Both sys-
tems are not able to eliminate com-
pletely the possibility of a deadlock, in
which case no merging is feasible be-
cause the resulting bucket region would
not be box-shaped [Hinrichs 1985; See-
ger and Kriegel 1990].

For a theoretical analysis of the grid
file and some of its variants, see Reg-
nier [1985] and Becker [1992]. Regnier
shows in particular that the grid file’s
average directory size for uniformly dis-
tributed data is Q(n11(d21)/(db11)),
where b is bucket size. He also proves
that the average space occupancy of the
data buckets is about 69% (ln 2).

188 • V. Gaede and O. Günther

ACM Computing Surveys, Vol. 30, No. 2, June 1998

4.1.2 EXCELL [Tamminen 1982].
Closely related to the grid file is the
EXCELL method (Extendible CELL)
proposed by Tamminen [1982]. In con-
trast to the grid file, where the parti-
tioning hyperplanes may be spaced ar-
bitrarily, the EXCELL method
decomposes the universe regularly: all
grid cells are of equal size. In order to
maintain this property in the presence
of insertions, each new split results in
the halving of all cells and therefore in
the doubling of the directory size. To
alleviate this problem, Tamminen
[1983] later suggested a hierarchical
method, similar to the multilevel grid
file of Whang and Krishnamurthy
[1985]. Overflow pages are introduced
to limit the depth of the hierarchy.

4.1.3 The Two-Level Grid File [Hin-
richs 1985]. The basic idea of the two-
level grid file is to use a second grid file
to manage the grid directory. The first
of the two levels is called the root direc-

tory, which is a coarsened version of the
second level, the actual grid directory.
Entries of the root directory contain
pointers to the directory pages of the
lower level, which in turn contain point-
ers to the data pages. By having a sec-
ond level, splits are often confined to
the subdirectory regions without affect-
ing too much of their surroundings.
Even though this modification leads to a
slower directory growth, it does not
solve the problem of superlinear direc-
tory size. Furthermore, Hinrichs implic-
itly assumes that the second level can
be kept in main memory, so that the
two-disk access principle still holds.
Figure 17 shows a two-level grid file for
the running example. Each cell in the
root directory has a pointer to the corre-
sponding entries in the subdirectory,
which have their own scales in turn.

4.1.4 The Twin Grid File [Hutflesz et
al. 1988b]. The twin grid file tries to
increase space utilization compared to

Figure 17. Two-level grid file.

Multidimensional Access Methods • 189

ACM Computing Surveys, Vol. 30, No. 2, June 1998

the original grid file by introducing a
second grid file. As indicated by the
name “twin,” the relationship between
these two grid files is not hierarchical,
as in the case of the two-level grid file,
but somewhat more balanced. Both grid
files span the whole universe. The dis-
tribution of the data among the two files
is performed dynamically. Hutflesz et
al. [1988b] report an average occupancy
of 90% for the twin grid file (compared
to 69% for the original grid file) without
substantial performance penalties.

To illustrate the underlying tech-
nique, consider the running example de-
picted in Figure 18. Let us assume that
each bucket can accommodate four
points. If the number of points in a
bucket exceeds that limit, one possibil-
ity is to create a new bucket and redis-
tribute the points among the two new
buckets. Before doing this, however, the
twin grid file tries to redistribute the
points between the two grid files. A
transfer of points from the primary file
P to the secondary file S may lead to a
bucket overflow in S. It may, however,
also imply a bucket underflow in P,
which may in turn lead to a bucket
merge and therefore to a reduction of
buckets in P. The overall objective of
the reshuffling is to minimize the total
number of buckets in the two grid files
P and S. Therefore we shift points from
P to S if and only if the resulting de-
crease in the number of buckets in P
outweighs the increase in the number of
buckets in S. This strategy also favors
points to be placed in the primary file in
order to form large and empty buckets

in the secondary file. Consequently, all
points in S can be associated with an
empty or a full bucket region of P. Note
that there usually exists no unique opti-
mum for the distribution of data points
between the two files.

The fact that data points may be
found in either of the two grid files
requires search operations to visit the
two files, which causes some overhead.
Nevertheless, the performance results
reported by Hutflesz et al. [1988b] indi-
cate that the search efficiency of the
twin grid file is competitive with the
original grid file. Although the twin grid
file is somewhat inferior to the original
grid file for smaller query ranges, this
changes for larger search spaces.

4.1.5 Multidimensional Linear Hash-
ing. Unlike multidimensional extend-
ible hashing, multidimensional linear
hashing uses no or only a very small
directory. It therefore occupies rela-
tively little storage compared to extend-
ible hashing, and it is usually possible
to keep all relevant information in main
memory.

Several different strategies have been
proposed to perform the required ad-
dress computation. Early proposals
[Ouksel and Scheuermann 1983] failed
to support range queries; however, Krie-
gel and Seeger [1986] later proposed a
variant of linear hashing called multidi-
mensional order-preserving linear hash-
ing with partial expansions (MOLHPE).
This structure is based on the idea of
partially extending the buckets without
expanding the file size at the same

Figure 18. Twin grid file.

190 • V. Gaede and O. Günther

ACM Computing Surveys, Vol. 30, No. 2, June 1998

time. To this end, they use a d-dimen-
sional expansion pointer referring to the
group of pages to be expanded next.
With this strategy, Kriegel and Seeger
can guarantee a modest file growth, at
least in the case of well-behaved data.
According to their experimental results,
MOLHPE outperforms its competitors
for uniformly distributed data. It fails,
however, for nonuniform distributions,
mostly because the hashing function
does not adapt gracefully to the given
distribution.

To solve this problem, the same au-
thors later applied a stochastic tech-
nique [Burkhard 1984] to determine the
split points. Because of the name of that
technique (a-quantiles), the access
method was called quantile hashing
[Kriegel and Seeger 1987, 1989]. The
critical property of the division in quan-
tile hashing is that the original data,
which may have a nonuniform distribu-
tion, are transformed into uniformly
distributed values for a. These values
are then used as input to the MOLHPE
algorithms for retrieval and update.
Since the region boundaries are not nec-
essarily simple binary intervals, a small
directory is needed. In exchange,
skewed input data can be maintained as
efficiently as uniformly distributed
data. Piecewise linear order-preserving
(PLOP) hashing was proposed by the
same authors a year later [Kriegel and
Seeger 1988]. Because this structure
can also be used as an access method for
extended objects, we delay its discus-
sion until Section 5.2.7.

Another variant with better order-
preserving properties than MOLHPE
has been reported by Hutflesz et al.
[1988a]. Their dynamic z-hashing uses a
space-filling technique called z-ordering
[Orenstein and Merrett 1984] to guar-
antee that points located close to each
other are also stored close together on
the disk. Z-ordering is described in de-
tail in Section 5.1.2. One disadvantage
of z-hashing is that a number of useless
data blocks will be generated, as in the
interpolation-based grid file [Ouksel
1985]. On the other hand, z-hashing lets

three to four buckets be read in a row on
the average before a seek is required,
whereas MOLHPE manages to read
only one [Hutflesz et al. 1988a]. Wid-
mayer [1991] later noted, however, that
both z-hashing and MOLHPE are of
limited use in practice, due to their in-
ability to adapt to different data distri-
butions.

4.2 Hierarchical Access Methods

In this section we discuss several PAMs
that are based on a binary or multiway
tree structure. Except for the BANG file
and the buddy tree, which are hybrid
structures, they perform no address
computation. Like hashing-based meth-
ods, however, they organize the data
points in a number of buckets. Each
bucket usually corresponds to a leaf
node of the tree (also called data node)
and a disk page, which contains those
points located in the corresponding
bucket region. The interior nodes of the
tree (also called index nodes) are used to
guide the search; each of them typically
corresponds to a larger subspace of the
universe that contains all bucket re-
gions in the subtree below. A search
operation is then performed by a top-
down tree traversal.

At this point, individual tree struc-
tures still dominate the field, although
more generic concepts are gradually at-
tracting more attention. The general-
ized search (GIST) tree by Hellerstein et
al. [1995], for example, attempts to sub-
sume many of these common features
under a generic architecture.

Differences among individual struc-
tures are mainly based on the charac-
teristics of the regions. Table 1 shows
that in most PAMs the regions at the
same tree level form a partitioning of
the universe; that is, they are mutually
disjoint, with their union being the com-
plete space. For SAMs this is not neces-
sarily true; as we show in Section 5,
overlapping regions and partial cover-
age are important techniques to im-
prove the search performance of SAMs.

Multidimensional Access Methods • 191

ACM Computing Surveys, Vol. 30, No. 2, June 1998

4.2.1 The k-d-B-Tree [Robinson 1981].
The k-d-B-tree combines some of the
properties of the adaptive k-d-tree
[Bentley and Friedman 1979] and the
B-tree [Comer 1979] to handle multidi-
mensional points. It partitions the uni-
verse in the manner of an adaptive k-d-
tree and associates the resulting
subspaces with tree nodes. Each inte-
rior node corresponds to an interval-
shaped region. Regions corresponding to
nodes at the same tree level are mutu-
ally disjoint; their union is the complete
universe. The leaf nodes store the data
points that are located in the corre-
sponding partition. Like the B-tree, the
k-d-B-tree is a perfectly balanced tree
that adapts well to the distribution of
the data. Other than for B-trees, how-
ever, no minimum space utilization can
be guaranteed. A k-d-B-tree for the run-
ning example is sketched in Figure 19.

Search queries are answered in a
straightforward manner, analogously to
the k-d-tree algorithms. For the inser-
tion of a new data point, one first per-
forms a point search to locate the right
bucket. If it is not full, the entry is
inserted. Otherwise, it is split and

about half the entries are shifted to the
new data node. Various heuristics are
available to find an optimal split [Rob-
inson 1981]. If the parent index node
does not have enough space left to ac-
commodate the new entries, a new page
is allocated and the index node is split
by a hyperplane. The entries are dis-
tributed among the two pages depend-
ing on their position relative to the
splitting hyperplane, and the split is
propagated up the tree. The split of the
index node may also affect regions at
lower levels of the tree, which must be
split by this hyperplane as well. Be-
cause of this forced split effect, it is not
possible to guarantee a minimum stor-
age utilization.

Deletion is straightforward. After per-
forming an exact match query, the entry
is removed. If the number of entries
drops below a given threshold, the data
node may be merged with a sibling data
node as long as the union remains a
d-dimensional interval. The procedure
to find a suitable sibling node to merge
with may involve several nodes. The
union of data pages results in the dele-
tion of at least one hyperplane in the

Figure 19. k-d-B-tree.

192 • V. Gaede and O. Günther

ACM Computing Surveys, Vol. 30, No. 2, June 1998

parent index node. If an underflow oc-
curs, the deletion has to be propagated
up the tree.

4.2.2 The LSD-Tree [Henrich et al.
1989]. We list the LSD (Local Split De-
cision) tree as a point access method
although its inventors emphasize that
the structure can also be used for man-
aging extended objects. This claim is
based on the fact that the LSD-tree
adapts well to data that are nonuni-
formly distributed and that it is there-
fore well-suited for use in connection
with the transformation technique; a
more detailed discussion of this ap-
proach appears in Section 5.1.1.

The directory of the LSD-tree is orga-
nized as an adaptive k-d-tree, partition-
ing the universe into disjoint cells of
various sizes. This results in a better
adaption to the data distribution than
the fixed binary partitioning. Although
the k-d-tree may be arbitrarily unbal-
anced, the LSD-tree preserves the ex-
ternal balancing property; that is, the
heights of its external subtrees differ at
most by one. This property is main-
tained by a special paging algorithm. If
the structure becomes too large to fit in
main memory, this algorithm identifies
subtrees that can be paged out such
that the external balancing property is
preserved. Although efficient, this spe-
cial paging strategy is obviously a major
impediment for the integration of the
LSD-tree into a general-purpose data-
base system. Figure 20 shows an LSD-

tree for the running example with one
external directory page.

As indicated previously, the split
strategy of the LSD-tree does not as-
sume the data to be uniformly distrib-
uted. On the contrary, it tries to accom-
modate skewed data by combining two
split strategies:

—data-dependent (SP1): The choice of
the split depends on the data and
tries to achieve a most balanced
structure; that is, there should be an
equal number of objects on both sides
of the split. As the name of the struc-
ture suggests, this split decision is
made locally.

—distribution-dependent (SP2): The
split is done at a fixed dimension and
position. The given data are not taken
into account because an underlying
(known) distribution is assumed.

To determine the split position SP, one
computes the linear combination of the
split locations that would result from
applying just one of those strategies:

SP 5 aSP1 1 ~1 2 a!SP2 .

The factor a is determined empirically
based on the given data; it can vary as
objects are inserted and deleted from
the tree.

Henrich [1995] presented two algo-
rithms to improve the storage utiliza-
tion of the LSD-tree by redistributing
data entries among buckets. Since these

Figure 20. LSD-tree.

Multidimensional Access Methods • 193

ACM Computing Surveys, Vol. 30, No. 2, June 1998

strategies make the LSD-tree sensitive
to the insertion sequence, the splitting
strategy must be adapted accordingly.
In order to improve the search perfor-
mance for nonpoint data and range que-
ries, Henrich and Möller [1995] suggest
storing auxiliary information on the ex-
isting data regions along with the index
entries of the LSD-tree.

4.2.3 The Buddy Tree [Seeger and
Kriegel 1990]. The buddy tree is a dy-
namic hashing scheme with a tree-
structured directory. The tree is con-
structed by consecutive insertion,
cutting the universe recursively into
two parts of equal size with iso-oriented
hyperplanes. Each interior node n corre-
sponds to a d-dimensional partition
Pd(n) and to an interval Id(n) # Pd(n).
Id(n) is the MBB of the points or inter-
vals below n. Partitions Pd (and there-
fore intervals Id) that correspond to
nodes on the same tree level are mutu-
ally disjoint. As in all tree-based struc-
tures, the leaves of the directory point
to the data pages. Other important
properties of the buddy tree include:

(1) each directory node contains at least
two entries;

(2) whenever a node n is split, the
MBBs Id(ni) and Id(nj) of the two
resulting subnodes ni and nj are re-
computed to reflect the current situ-
ation; and

(3) except for the root of the directory,
there is exactly one pointer refer-
ring to each directory page.

Due to property 1, the buddy tree may
not be balanced; that is, the leaves of
the directory may be on different levels.
Property 2 tries to achieve a high selec-
tivity at the directory level. Properties 1
and 3 make sure that the growth of the
directory remains linear. To avoid the
deadlock problem of the grid file, the
buddy tree uses k-d-trees [Orenstein
1982] to partition the universe. Only a
restricted number of buddies are admit-
ted, namely, those that could have been
obtained by some recursive halving of
the universe. However, as shown by

Seeger and Kriegel [1990], the number
of possible buddies is larger than in the
grid file and other structures, which
makes the buddy tree more flexible in
the case of updates. Experiments by
Kriegel et al. [1990] indicate that the
buddy tree is superior to several other
PAMs, including the hB-tree, the BANG
file, and the two-level grid file. A buddy
tree for the running example is shown
in Figure 21.

Two older structures, the interpola-
tion-based grid file by Ouksel [1985]
and the balanced multidimensional ex-
tendible hash tree by Otoo [1986], are
both special cases of the buddy tree that
can be obtained by restricting the prop-
erties of the regions. Interpolation-
based grid files avoid the excessive
growth of the grid file directory by rep-
resenting blocks explicitly, which guar-
antees that there is only one directory
entry for each data bucket. The disad-
vantage of this approach is that empty
regions have to be introduced in the
case of skewed data input. Seeger
[1991] later showed that the buddy tree
can easily be modified to handle spa-
tially extended objects by using one of
the techniques presented in Section 5.

4.2.4 The BANG File [Freeston
1987]. To obtain a better adaption to
the given data points, Freeston [1987]
proposed a new structure, which he
called the BANG (Balanced And Nested
Grid) file—even though it differs from
the grid file in many aspects. Similar to
the grid file, it partitions the universe
into intervals (boxes). What is different,
however, is that in the BANG file
bucket regions may intersect, which is
not possible in the regular grid file. In
particular, one can form nonrectangular
bucket regions by taking the geometric
difference of two or more intervals
(nesting). To increase storage utiliza-
tion, it is possible during insertion to
redistribute points between different
buckets. To manage the directory, the
BANG file uses a balanced search tree
structure. In combination with the
hash-based partitioning of the universe,

194 • V. Gaede and O. Günther

ACM Computing Surveys, Vol. 30, No. 2, June 1998

the BANG file can therefore be viewed
as a hybrid structure.

Figure 22 shows the BANG file for the
running example. Three rectangles have
been cut out of the universe R1: R2, R5,
and R6. In turn, the rectangles R3 and
R4 are nested into R2 and R5, respec-
tively. If one represents the resulting
space partitioning as a tree using bit
interleaving, one obtains the structure
shown on the right-hand side of Figure
22. Here the asterisk represents the
empty string, that is, the universe. A
comparison with Figure 13 shows that
the BANG file can in fact be regarded as
a paginated version of the BD-tree dis-
cussed in Section 3.2.3.

In order to achieve a high storage
utilization, the BANG file performs
spanning splits that may lead to the
displacement of parts of the tree. As a
result, a point search may in the worst
case require the traversal of the entire
directory in a depth-first manner. To
address this problem, Freeston [1989a]
later proposed different splitting strate-
gies, including forced splits as used by
the k-d-B-tree. These strategies avoid

the spanning problem at the possible
expense of lower storage utilization. Ku-
mar [1994a] made a similar proposal
based on the BD-tree and called the
resulting structure a G-tree (grid tree).
The structure differs from the BD-tree
in the way the partitions are mapped
into buckets. To obtain a simpler map-
ping, the G-tree sacrifices the minimum
storage utilization that holds for the
BD-tree.

Although the data partitioning given
in Figure 22 is feasible for the BD-tree
and the original BANG file, it cannot be
achieved with the BANG file using
forced splits [Freeston 1989a]. For this
variant, we would have to split the root
and move, for example, entry c5 to the
bucket containing the entries p7 and c6.

Freeston [1989b] also proposed an ex-
tension to the BANG file to handle ex-
tended objects. As often found in PAM
extensions, the centroid is used to deter-
mine the bucket in which to place a
given object. To account for the object’s
spatial extension, the bucket regions
are extended where necessary [Seeger
and Kriegel 1988; Ooi 1990].

Figure 21. Buddy tree.

Multidimensional Access Methods • 195

ACM Computing Surveys, Vol. 30, No. 2, June 1998

Ouksel and Mayer [1992] proposed an
access method called a nested interpola-
tion-based grid file that is closely re-
lated to the BANG file. The major dif-
ference concerns the way the directory
is organized. In essence, the directory
consists of a list of one-dimensional ac-
cess methods (e.g., B-trees) storing the
z-order encoding of the different data
regions, along with pointers to the re-
spective data buckets. By doing so, Ouk-
sel and Mayer improved the worst-case
bounds from O(n) (as in the case of the
BANG file) to O(logb n), where b is
bucket size.

4.2.5 The hB-Tree [Lomet and Salz-
berg 1989, 1990]. The hB-tree (holey
brick tree) is related to the k-d-B-tree in
that it utilizes k-d-trees to organize the
space represented by its interior nodes.
One of the most noteworthy differences
is that node splitting is based on multi-
ple attributes. As a result, nodes no
longer correspond to d-dimensional in-
tervals but to intervals from which
smaller intervals have been excised.
Similar to the BANG file, the result is a
somewhat fractal structure (a holey
brick) with an external enclosing region
and several cavities called extracted re-
gions. As we show later, this technique
avoids the cascading of splits that is
typical for many other structures.

In order to minimize redundancy, the
k-d-tree corresponding to an interior
node can have several leaves pointing to
the same child node. Strictly speaking,
the hB-tree is therefore no longer a tree

but a directed acyclic graph. With re-
gard to the geometry, this corresponds
to the union of the corresponding re-
gions. Once again, the resulting region
is typically no longer box-shaped. This
peculiarity is illustrated in Figure 23,
which shows an hB-tree for the running
example. Here the root node contains
two pointers to its left descendant node.
Its corresponding region u is the union
of two rectangles: the one to the left of
x1 and the one above y1. The remaining
space (the right lower quadrant) is ex-
cluded from u, which is made explicit by
the entry ext in the corresponding k-d-
tree. A similar observation applies to
region G, which is again L-shaped: it
corresponds to the NW, the SE, and the
NE quadrants of the rectangle above y1.

Searching is similar to the k-d-B-tree;
each internal k-d-tree is traversed as
usual. Insertions are also carried out
analogously to the k-d-B-tree until a
leaf node reaches its capacity and a split
is required. Instead of using just one
single hyperplane to split the node, the
hB-tree split is based on more than one
attribute and on the internal k-d-tree of
the data node to be split. Lomet and
Salzberg [1989] show that this policy
guarantees a worst-case data distribu-
tion between the two resulting two
nodes of 1

3 : 2
3. This observation is not

restricted to the hB-tree but generalizes
to other access methods such as the
BD-tree and the BANG file.

The split of the leaf node causes the
introduction of an additional k-d-tree

Figure 22. BANG file.

196 • V. Gaede and O. Günther

ACM Computing Surveys, Vol. 30, No. 2, June 1998

node to describe the resulting subspace.
This may in turn lead to the split of the
ancestor node and its k-d-tree. Since
k-d-trees are not height-balanced, split-
ting the tree at its root may lead to an
unbalanced distribution of the nodes.
The tree is therefore usually split at a
lower level, which corresponds to the
excision of a convex region from the
space corresponding to the node to be
split. The entries belonging to that sub-
space are extracted and moved to a new
hB-tree node. To reflect the absence of
the excised region, the hB-tree node is
assigned an external marker, which in-
dicates that the region is no longer a
simple interval. With this technique the
problem of forced splits is avoided.
Splits are local and do not have to be
propagated downwards.

In summary, the leaf nodes of the
internal k-d-trees are used to

—reference a collection of data records;
—reference other hB-tree nodes;
—indicate that a part of this tree has

been extracted.

In a later Ph.D. thesis [Evangelidis
1994], the hB-tree is extended to allow
for concurrency and recovery by modify-
ing it in such a way that it becomes a
special case of the P-tree [Lomet and
Salzberg 1992]. Consequently, the new
structure is called the hBP-tree [Evan-
gelidis et al. 1995]. As a result of these
modifications, the new structure can
immediately take advantage of the

P-tree node consolidation algorithm.
The lack of such an algorithm has been
one of the major weaknesses of the hB-
tree. Furthermore, the hBP-tree cor-
rects a flaw in the splitting/posting al-
gorithm of the hB-tree that may occur
for more than three index levels. The
essential idea of the correction is to
impose restrictions on the splitting/
posting algorithms, which in turn af-
fects the space occupancy.

One minor problem remains: as men-
tioned, the hB-tree may store several
references to the same child node. The
number of nodes may in principle ex-
pose a growth behavior that is superlin-
ear in the number of regions; however,
this observation seems of mainly theo-
retical interest. According to the au-
thors of the hBP-tree [Evangelidis et al.
1995], it is quite rare that more than
one leaf of the underlying k-d tree refers
to any given child. In their experiments,
more than 95% of the index nodes and
all of the data nodes had only one such
reference.

4.2.6 The BV-Tree [Freeston 1995].
The BV-tree represents an attempt to
solve the d-dimensional B-tree problem,
that is, to find a generic generalization
of the B-tree to higher dimensions. The
BV-tree is not meant to be a concrete
access method, but rather a conceptual
framework that can be applied to a va-
riety of existing access methods, includ-
ing the BANG file or the hB-tree.

Freeston’s proposal is based on the

Figure 23. hB-tree.

Multidimensional Access Methods • 197

ACM Computing Surveys, Vol. 30, No. 2, June 1998

conjecture that one can maintain the
major strengths of the B-tree in higher
dimensions, provided one relaxes the
strict requirements concerning tree
balance and storage utilization. The BV-
tree is not completely balanced. Fur-
thermore, although the B-tree guaran-
tees a worst-case storage utilization of
50%, Freeston argues that such a com-
paratively high storage utilization can-
not be ensured for higher dimensions
for topological reasons. However, the
BV-tree manages to achieve the 33%
lower bound suggested by Lomet and
Salzberg [1989].

To achieve a guaranteed worst-case
search performance, the BV-tree com-
bines the excision concept [Freeston
1987] with a technique called promo-
tion. Here, intervals from lower levels of
the tree are moved up the tree, that is,
closer to the root. To keep track of the
resulting changes, with each promoted
region we store a level number (called a
guard) that denotes the region’s original
level.

The search algorithms are based on a
notional backtracking technique. While
descending the tree, we store possible
alternatives (relevant guards of the dif-
ferent index levels) in a guard set. The
entries of this set act as backtracking
points and represent a single path from
the root to the level currently inspected;
for point queries, they can be main-
tained as a stack. To answer a point
query, we start at the root and inspect
all node entries to see whether the cor-

responding regions overlap the search
point. Among those entries inspected,
we choose the best-matching entry to
investigate next. We may possibly also
store some guards in the guard set. At
the next level this procedure is repeated
recursively, this time taking the stored
guards into account. Before following
the best-matching entry down to the
next level, the guard set is updated by
merging the matching new guards with
the existing ones. Two guards at the
same level are merged by discarding the
poorer match. This search continues re-
cursively until we reach the leaf level.
Note that for point queries, the length
of the search path is equal to the height
of the BV-tree because each region in
space is represented by a unique node
entry.

Figure 24 shows a BV-tree and the
corresponding space partitioning for the
running example. For illustration pur-
poses we confine the grouped regions or
objects not by a tight polyline, but by a
loosely wrapped boundary. In this ex-
ample, the region D0 acts as a guard. It
is clear from the space partitioning that
D0 originally belongs to the bottom in-
dex level (i.e., the middle level in the
figure). Since it functions as a guard for
the enclosed region S1, however, it has
been promoted to the root level. Sup-
pose we are interested in all objects
intersecting the black rectangle X.
Starting at the root, we place D0 in the
guard set and investigate S1. Because
inspection of S1 reveals that the search

Figure 24. BV-tree.

198 • V. Gaede and O. Günther

ACM Computing Surveys, Vol. 30, No. 2, June 1998

region is included neither in P0 nor in
N0 or M0, we backtrack to D0 and in-
spect the entries for D0. In our example,
no entry satisfies the query.

In a later paper, Freeston [1997] dis-
cusses complexity issues related to up-
dates of guards. In the presence of such
updates, it is necessary to “downgrade”
(demote) entries that are no longer
guards, which may in turn affect the
overall structure negatively. Freeston’s
conclusion is that the logarithmic access
performance and the minimum storage
utilization of the BV-tree can be pre-
served by postponing the demotion of
such entries, which may lead to (very)
large index nodes.

4.3 Space-Filling Curves for Point Data

We already mentioned the main reason
why the design of multidimensional ac-
cess methods is so difficult compared to
the one-dimensional case: There is no
total order that preserves spatial prox-
imity. One way out of this dilemma is to
find heuristic solutions, that is, to look
for total orders that preserve spatial
proximity at least to some extent. The
idea is that if two objects are located
close together in original space, there
should at least be a high probability
that they are close together in the total
order, that is, in the one-dimensional
image space. For the organization of
this total order one could then use a
one-dimensional access method (such as
a B1-tree), which may provide good per-
formance at least for point queries.
Range queries are somewhat more com-
plicated; a simple mapping from multi-
dimensional to one-dimensional range
queries often implies major performance
penalties. Tropf and Herzog [1981]
present a more sophisticated and effi-
cient algorithm for this problem.

Research on the underlying mapping
problem goes back well into the last
century; see Sagan [1994] for a survey.
With regard to its relevance for spatial
searching, Samet [1990b] provides a
good overview of the subject. One thing
all proposals have in common is that

they first partition the universe with a
grid. Each of the grid cells is labeled
with a unique number that defines its
position in the total order (the space-
filling curve). The points in the given
data set are then sorted and indexed
according to the grid cell in which they
are contained. Note that although the
labeling is independent of the given
data, it is obviously critical for the pres-
ervation of proximity in one-dimen-
sional address space. That is, the way
we label the cells determines how clus-
tered adjacent cells are stored on sec-
ondary memory.

Figure 25 shows four common label-
ings. Figure 25a corresponds to a row-
wise enumeration of the cells [Samet
1990b]. Figure 25b shows the cell enu-
meration imposed by the Peano curve
[Morton 1966], also called quad codes
[Finkel and Bentley 1974], N-trees
[White 1981], locational codes [Abel and
Smith 1983], or z-ordering [Orenstein
and Merrett 1984]. Figure 25c shows
the Hilbert curve [Faloutsos and Rose-
man 1989; Jagadish 1990a], and Figure
25d depicts Gray ordering [Faloutsos
1986, 1988], which is obtained by inter-
leaving the Gray codes of the x- and
y-coordinates in a bitwise manner. Gray
codes of successive cells differ in exactly
one bit.

Based on several experiments, Abel
and Mark [1990] conclude that z-order-
ing and the Hilbert curve are most suit-
able as multidimensional access meth-
ods. Jagadish [1990a] and Faloutsos
and Rong [1991] all prefer the Hilbert
curve of those two.

Z-ordering is one of the few spatial
access methods that has found its way
into commercial database products. In
particular, Oracle [1995] has adapted
the technique and offered it for some
time as a product.

An important advantage of all space-
filling curves is that they are practically
insensitive to the number of dimensions
if the one-dimensional keys can be arbi-
trarily large. Everything is mapped into
one-dimensional space, and one’s favor-
ite one-dimensional access method can

Multidimensional Access Methods • 199

ACM Computing Surveys, Vol. 30, No. 2, June 1998

be applied to manage the data. An obvi-
ous disadvantage of space-filling curves
is that incompatible index partitions
cannot be joined without recomputing
the codes of at least one of the two
indices.

5. SPATIAL ACCESS METHODS

All multidimensional access methods
presented in the previous section have
been designed to handle sets of data
points and support spatial searches on
them. None of those methods is directly
applicable to databases containing ob-
jects with a spatial extension. Typical
examples include geographic databases,
containing mostly polygons, or mechan-
ical CAD data, consisting of three-di-
mensional polyhedra. In order to handle
such extended objects, point access
methods have been modified using one
of the techniques:

(1) transformation (object mapping),
(2) overlapping regions (object bound-

ing),
(3) clipping (object duplication), or
(4) multiple layers.

A simpler version of this classification
was first introduced by Seeger and Krie-
gel [1988]. Later on, Kriegel et al.
[1991] added another dimension to this
taxonomy: a spatial access method’s
base type, that is, the spatial data type
it supports primarily. Table 2 shows the
resulting classification of spatial access
methods. Note that most structures use
the interval as a base type.

In the following sections, we present
each of these techniques in detail, to-
gether with several SAMs based on it.

5.1 Transformation

One-dimensional access methods (Sec-
tion 3.1) and PAMs (Section 4) can often
be used to manage spatially extended
objects, provided the objects are first
transformed into a different representa-
tion. There are essentially two options:
one can either transform each object
into a higher-dimensional point [Hin-
richs 1985; Seeger and Kriegel 1988], or
transform it into a set of one-dimen-
sional intervals by means of space-fill-
ing curves. We discuss the two tech-
niques in turn.

Figure 25. Four space-filling curves.

200 • V. Gaede and O. Günther

ACM Computing Surveys, Vol. 30, No. 2, June 1998

5.1.1 Mapping to Higher-Dimensional
Space. Simple geometric shapes can be
represented as points in higher-dimen-
sional space. For example, it takes four
real numbers to represent a (two-dimen-
sional) rectangle in E2. Those numbers
may be interpreted as coordinates of a
point in E4. One possibility is to take
the x- and y-coordinates of two diagonal
corners (endpoint transformation); an-
other option is based on the centroid
and two additional parameters for the
extension of the object in the x- and
y-direction (midpoint transformation).
Any such transformation maps a data-
base of rectangles onto a database of
four-dimensional points, which can then
be managed by one of the PAMs dis-
cussed in the previous section. Search
operations can be expressed as point
and region queries in this dual space.

If the original database contains more
complex objects, they have to be approx-
imated—for example, by a rectangle or
a sphere—before transformation. In this
case, the point access method can lead
to only a partial solution (cf. Figure 2).

Figures 26 and 27 show the dual
space equivalents of some common que-
ries. Figure 26 uses the endpoint trans-
formation and Figure 27 the midpoint

transformation. For presentation pur-
poses, the figure shows a mapping from
intervals in E1 to points in E2. Figures
26a and 27a show the transformation
result for the range query with search
range [l, u]. In dual space this range
query maps into a general region query.
Any point in dual space that lies in the
shaded areas corresponds to an interval
in original space that overlaps the
search interval [l, u], and vice versa.
Enclosure and containment queries
with the interval [l, u] as argument
also map into general region queries
(Figures 26b and 27b). A point query,
finally, maps into a range query for the
endpoint transformation (Fig. 26c) and
a general region query for the midpoint
transformation (Fig. 27c).

Notwithstanding its conceptual ele-
gance, this approach has several disad-
vantages. First, as the preceding exam-
ples indicate, the formulation of point
and range queries in dual space is usu-
ally much more complicated than in
original space [Nievergelt and Hinrichs
1987]. Finite search regions may map
into infinite search regions in dual
space, and some more complex queries
involving spatial predicates may no
longer be expressible at all [Henrich et

Table 2. Classification of SAMs [Kriegel et al. 1991]

Multidimensional Access Methods • 201

ACM Computing Surveys, Vol. 30, No. 2, June 1998

al. 1989; Orenstein 1990; Pagel et al.
1993]. Second, depending on the map-
ping chosen, the distribution of points
in dual space may be highly nonuniform
even though the original data are uni-
formly distributed. With the endpoint
transformation, for example, there are
no image points below the main diago-
nal [Faloutsos et al. 1987]. Third, the
images of two objects that are close in
the original space may be arbitrarily far
apart from each other in dual space.

To overcome some of these problems,
Henrich et al. [1989], Faloutsos and
Rong [1991], as well as Pagel et al.
[1993] have proposed special transfor-
mation and split strategies. A structure
designed explicitly to be used in connec-
tion with the transformation technique
is the LSD-tree (cf. Section 4.2.2). Per-
formance studies by Henrich and Six
[1991] confirm the claim that the LSD-
tree adapts well to nonuniform distribu-
tions, which is of particular relevance in
this context. It also contains a mecha-

nism to avoid searching large empty
query spaces, which may occur as a
result of the transformation.

5.1.2 Space-Filling Curves for Ex-
tended Objects. Space-filling curves (cf.
Section 4.3) are a very different type of
transformation approach that seems to
have fewer of the drawbacks listed in
the previous section. Space-filling
curves can be used to represent ex-
tended objects by a list of grid cells or,
equivalently, a list of one-dimensional
intervals that define the position of the
grid cells concerned. In other words, a
complex spatial object is approximated
not by only one simpler object, but by
the union of several such objects. There
are different variations of this basic
concept, including z-ordering [Orenstein
and Merrett 1984], the Hilbert R-tree
[Kamel and Faloutsos 1994], and the
UB-tree [Bayer 1996]. As an example,
we discuss z-ordering in more detail.

Figure 26. Search queries in dual space—endpoint transformation: (a) intersection query; (b) contain-
ment/enclosure queries; (c) point query.

Figure 27. Search queries in dual space—midpoint transformation: (a) intersection query; (b) contain-
ment/enclosure queries; (c) point query.

202 • V. Gaede and O. Günther

ACM Computing Surveys, Vol. 30, No. 2, June 1998

For a discussion of the Hilbert R-tree,
see Section 5.2.1.

Z-ordering [Orenstein and Merrett
1984] is based on the Peano curve. A
simple algorithm to obtain the z-order-
ing representation of a given extended
object can be described as follows. Start-
ing from the (fixed) universe containing
the data object, space is split recur-
sively into two subspaces of equal size
by (d 2 1)-dimensional hyperplanes. As
in the k-d-tree, the splitting hyper-
planes are iso-oriented, and their direc-
tions alternate in fixed order among the
d possibilities. The subdivision contin-
ues until one of the following conditions
holds.

(1) The current subspace does not over-
lap the data object.

(2) The current subspace is fully en-
closed in the data object.

(3) Some given level of accuracy has
been reached.

The data object is thus represented by
a set of cells, called Peano regions or
z-regions. As shown in Section 3.2.3,
each such Peano region can be repre-
sented by a unique bit string, called
Peano code, ST_MortonNumber, z-value,
or DZ-expression. Using those bit
strings, the cells can then be stored in a
standard one-dimensional index, such
as a B1-tree.

Figure 28 shows a simple example.
Figure 28a shows the polygon to be ap-
proximated, with the frame represent-

ing the universe. After several splits,
starting with a vertical split line, we
obtain Figure 28b. Nine Peano regions
of different shapes and sizes approxi-
mate the object. The labeling of each
Peano region is shown in Figure 28c.
Consider the Peano region z# in the
lower left part of the given polygon. It
lies to the left of the first vertical hyper-
plane and below the first horizontal hy-
perplane, resulting in the first two bits
being 00. As we further partition the
lower left quadrant, z# lies on the left of
the second vertical hyperplane but
above the second horizontal hyperplane.
The complete bit string accumulated so
far is therefore 0001. In the next round
of decompositions, z# lies to the right of
the third vertical hyperplane and above
the third horizontal hyperplane, result-
ing in two additional 1s. The complete
bit string describing z# is therefore
000111.

Figures 28b and 28c also give some
bit strings along the coordinate axes,
which describe only the splits orthogo-
nal to the given axis. The string 01 on
the x-axis, for example, describes the
subspace to the left of the first vertical
split and to the right of the second ver-
tical split. By bit-interleaving the bit
strings that one finds when projecting a
Peano region onto the coordinate axes,
we obtain its Peano code. Note that if a
Peano code z1 is the prefix of some other
Peano code z2, the Peano region corre-
sponding to z1 encloses the Peano re-

Figure 28. Z-ordering of a polygon.

Multidimensional Access Methods • 203

ACM Computing Surveys, Vol. 30, No. 2, June 1998

gion corresponding to z2. The Peano re-
gion corresponding to 00, for example,
encloses the regions corresponding to
0001 and 000. This is an important ob-
servation, since it can be used for query
processing [Gaede and Riekert 1994].
Figure 29 shows Peano regions for the
running example.

As z-ordering is based on an underly-
ing grid, the resulting set of Peano re-
gions is usually only an approximation
of the original object. The termination
criterion depends on the accuracy or
granularity (maximum number of bits)
desired. More Peano regions obviously
yield more accuracy, but they also in-
crease the size and complexity of the
approximation. As pointed out by Oren-
stein [1989b], there are two possibly
conflicting objectives: the number of
Peano regions to approximate the object
should be small, since this results in
fewer index entries; and the accuracy of
the approximation should be high, since
this reduces the expected number of
false drops [Orenstein 1989a, b; Gaede
1995b]. Objects are thus paged in from
secondary memory, only to find out that

they do not satisfy the search predicate.
A simple way to reduce the number of
false drops is to add a single bit to the
encoding that reflects for each Peano
region whether it is completely enclosed
in the original object [Gaede 1995a]. An
advantage of z-ordering is that local
changes of granularity lead to only local
changes of the corresponding encoding.

5.2 Overlapping Regions

The key idea of the overlapping regions
technique is to allow different data
buckets in an access method to corre-
spond to mutually overlapping sub-
spaces. With this method we can assign
any extended object directly and as a
whole to one single bucket region. Con-
sider, for instance, the k-d-B-tree for
the running example, depicted in Figure
19, and one of the polygons given in the
scenario (Figure 9), say r10. r10 over-
laps two bucket regions, the one con-
taining p10, c1, and c2, and the other
one containing c10 and p9. If we extend
one of those regions to accommodate
r10, this polygon could be stored in the

Figure 29. Z-ordering.

204 • V. Gaede and O. Günther

ACM Computing Surveys, Vol. 30, No. 2, June 1998

corresponding bucket. Note, however,
that this extension inevitably leads to
an overlap of regions.

Search algorithms can be applied al-
most unchanged. The only differences
are due to the fact that the overlap may
increase the number of search paths we
have to follow. Even a point query may
require the investigation of multiple
search paths because there may be sev-
eral subspaces at any index level that
include the search point. For range and
region queries, the average number of
search paths increases as well.

Hence, although functionality is not a
problem when using overlapping re-
gions, performance can be. This is par-
ticularly relevant when the spatial da-
tabase contains objects whose size is
large relative to the size of the universe.
Typical examples are known from geo-
graphic applications where one must
represent objects of widely varying size
(such as buildings and states) in the
same spatial database. Each insertion
of a new data object may increase the
overlap and therefore the average num-
ber of search paths to be traversed per
query. Eventually, the overlap between
subspaces may become large enough to
render the index ineffective because one
ends up searching most of the index for
each single query. A well-known exam-
ple where this degenerate behavior has
been observed is the R-tree [Guttman
1984; Greene 1989]. Several modifica-
tions have been presented to mitigate
these problems, including a technique to
minimize the overlap [Roussopoulos and
Leifker 1985]; see Section 5.2.1 for a
detailed discussion.

A minor problem with overlapping re-
gions concerns ambiguities during in-
sertion. If we insert a new object, we
could in principle enlarge any subspace
to accommodate it. To optimize perfor-
mance, there exist several strategies
[Pagel et al. 1993]. For example, we
could try to find the subspace that
causes minimal additional overlap, or
the one that requires the least enlarge-
ment. If it takes too long to compute the

optimal strategy for every insertion,
some heuristic may be used.

When a subspace needs to be split,
one also tries to find a split that leads to
minimal overall overlap. Guttman
[1984], Greene [1989], and Beckmann et
al. [1990] suggest some heuristics for
this problem.

5.2.1 The R-Tree [Guttman 1984]. An
R-tree corresponds to a hierarchy of
nested d-dimensional intervals (boxes).
Each node n of the R-tree corresponds to
a disk page and a d-dimensional inter-
val Id(n). If n is an interior node then
the intervals corresponding to the de-
scendants ni of n are contained in Id(n).
Intervals at the same tree level may
overlap. If n is a leaf node, Id(n) is the
d-dimensional minimum bounding box
of the objects stored in n. For each object
in turn, n stores only its MBB and a
reference to the complete object descrip-
tion. Other properties of the R-tree in-
clude the following.

—Every node contains between m and
M entries unless it is the root. The
lower bound m prevents the degener-
ation of trees and ensures an efficient
storage utilization. Whenever the
number of a node’s descendants drops
below m, the node is deleted and its
descendants are distributed among
the sibling nodes (tree condensation).
The upper bound M can be derived
from the fact that each tree node cor-
responds to exactly one disk page.

—The root node has at least two entries
unless it is a leaf.

—The R-tree is height-balanced; that is,
all leaves are at the same level. The
height of an R-tree is at most
logm (N) for N index records (N . 1).

Searching in the R-tree is similar to
the B-tree. At each index node n, all
index entries are tested to see whether
they intersect the search interval Is. We
then visit all child nodes ni with Id(ni) ù
Is Þ À. Due to the overlapping region
paradigm, there may be several inter-
vals Id(ni) that satisfy the search predi-
cate. In the worst case, one may have to

Multidimensional Access Methods • 205

ACM Computing Surveys, Vol. 30, No. 2, June 1998

visit every index page. Figure 30 shows
an R-tree for the running example. Re-
member that the mi denote the MBBs of
the polygonal data objects ri. A point
query with search point X results in two
paths: R8 3 R4 3 m7 and R7 3 R3 3
m5.

Because the R-tree only manages
MBBs, it cannot solve a given search
problem completely unless, of course,
the actual data objects are interval-
shaped. Otherwise the result of an R-
tree query is a set of candidate objects,
whose actual spatial extent has to be
tested for intersection with the search
space (cf. Fig. 2). This step, which may
involve additional disk accesses and
considerable computation, has not been
taken into account in most published
performance analyses [Guttman 1984;
Greene 1989].

To insert an object o, we insert the
minimum bounding interval Id(o) and
an object reference into the tree. In con-
trast to searching, we traverse only a
single path from the root to the leaf. At
each level we choose the child node n
whose corresponding interval Id(n)
needs the least enlargement to enclose
the data object’s interval Id(o). If sev-
eral intervals satisfy this criterion,
Guttman proposes selecting the descen-
dant associated with the smallest inter-
val. As a result, we insert the object
only once; that is, the object is not dis-
persed over several buckets. Once we
have reached the leaf level, we try to
insert the object. If this requires an

enlargement of the corresponding
bucket region, we adjust it appropri-
ately and propagate the change up-
wards. If there is not enough space left
in the leaf, we split it and distribute the
entries among the old and the new page.
Once again, we adjust each of the new
intervals accordingly and propagate the
split up the tree.

As for deletion, we first perform an
exact match query for the object in
question. If we find it in the tree, we
delete it. If the deletion causes no un-
derflow, we check whether the bounding
interval can be reduced in size. If so, we
perform this adjustment and propagate
it upwards. If the deletion causes node
occupation to drop below m, however,
we copy the node content into a tempo-
rary node and remove it from the index.
We then propagate the node removal up
the tree, which typically results in the
adjustment of several bounding inter-
vals. Afterwards we reinsert all or-
phaned entries of the temporary node.
Alternatively, we can merge the or-
phaned entries with sibling entries. In
both cases, one may again have to ad-
just bounding intervals further up the
tree.

In his original paper, Guttman [1984]
discusses various policies to minimize
the overlap during insertion. For node
splitting, for example, Guttman sug-
gests several algorithms, including a
simpler one with linear time complexity
and a more elaborate one with qua-
dratic complexity. Later work by other

Figure 30. R-tree.

206 • V. Gaede and O. Günther

ACM Computing Surveys, Vol. 30, No. 2, June 1998

researchers led to the development of
more sophisticated policies. The packed
R-tree [Roussopoulos and Leifker 1985],
for example, computes an optimal parti-
tioning of the universe and a corre-
sponding minimal R-tree for a given
scenario. However, it requires all data
to be known a priori.

Other interesting variants of the R-
tree include the sphere tree by Oosterom
[1990] and the Hilbert R-tree by Kamel
and Faloutsos [1994]. The sphere tree
corresponds to a hierarchy of nested
d-dimensional spheres rather than in-
tervals. The Hilbert R-tree combines the
overlapping regions technique with
space-filling curves (cf. Section 4.3). It
first stores the Hilbert values of the
data rectangles’ centroids in a B1-tree,
then enhances each interior B1-tree
node by the MBB of the subtree below.
This facilitates the insertion of new ob-
jects considerably. Together with a re-
vised splitting policy, Kamel and Fa-
loutsos report good performance results
for both searches and updates. How-
ever, since their splitting policy takes
only the objects’ centroids into account,
the performance of the structure is
likely to deteriorate in the presence of
large objects.

Ng and Kameda [1993] discuss how to
support concurrency in R-trees by
adopting the lock-coupling technique of
B-trees [Bayer and Schkolnick 1977] to
R-trees. Similarly, Ng and Kameda
[1994] and Kornacker and Banks [1995]
apply ideas of the B-link tree [Lehman

and Yao 1981] to R-trees, yielding two
structures both called the R-link tree.
Kornacker and Banks empirically dem-
onstrate that their R-link tree is supe-
rior to the R-tree using lock-coupling.

5.2.2 The R*-Tree [Beckmann et al.
1990]. Based on a careful study of R-
tree behavior under different data dis-
tributions, Beckmann et al. [1990] iden-
tified several weaknesses of the original
algorithms. In particular, they con-
firmed the observation of Roussopoulos
and Leifker [1985] that the insertion
phase is critical for good search perfor-
mance. The design of the R*-tree (see
Figure 31) therefore introduces a policy
called forced reinsert: If a node over-
flows, it is not split right away. Rather,
p entries are removed from the node
and reinserted into the tree. The pa-
rameter p may vary; Beckmann et al.
suggest it should be about 30% of the
maximal number of entries per page.

Another issue investigated by Beck-
mann et al. concerns the node-splitting
policy. Although Guttman’s R-tree algo-
rithms tried only to minimize the area
covered by the bucket regions, the R*-
tree algorithms also take the following
objectives into account.

—Overlap between bucket regions at
the same tree level should be mini-
mized. The less overlap, the smaller
the probability that one has to follow
multiple search paths.

—Region perimeters should be mini-
mized. The preferred rectangle is the

Figure 31. R*-tree.

Multidimensional Access Methods • 207

ACM Computing Surveys, Vol. 30, No. 2, June 1998

square, since this is the most compact
rectangular representation.

—Storage utilization should be maxi-
mized.

The improved splitting algorithm of
Beckmann et al. [1990] is based on the
plane-sweep paradigm [Preparata and
Shamos 1985]. In d dimensions, its time
complexity is O(d z n z log n) for a node
with n intervals.

In summary, the R*-tree differs from
the R-tree mainly in the insertion algo-
rithm; deletion and searching are essen-
tially unchanged. Beckmann et al. re-
port performance improvements of up to
50% compared to the basic R-tree. Their
implementation also shows that reinser-
tion may improve storage utilization. In
broader comparisons, however, Hoel
and Samet [1992] and Günther and
Gaede [1997] found that the CPU time
overhead of reinsertion can be substan-
tial, especially for large page sizes; see
Section 6 for further details.

One of the major insights of the R*-
tree is that node splitting is critical for
the overall performance of the access
method. Since a naive (exhaustive) ap-
proach has time complexity O(d z 2n) for
n given intervals, there is a need for
efficient and optimal splitting policies.
Becker et al. [1992] proposed a polyno-
mial time algorithm that finds a bal-
anced split, which also optimizes one of
several possible objective functions
(e.g., minimum sum of areas or mini-
mum sum of perimeters). They assume
in their analysis that the intervals are
presorted in some specific order. More
recently, Ang and Tan [1997] presented
a new linear node splitting algorithm,
based on a simple heuristic. According
to the results reported, it outperforms
its competitors.

Berchtold et al. [1996] proposed a
modification of the R-tree called the X-
tree that seems particularly well suited
for indexing high-dimensional data. The
X-tree reduces overlap among directory
intervals by using a new organization: it
postpones node splitting by introducing
supernodes, that is, nodes larger than

the usual block size. In order to find a
suitable split, the X-tree also maintains
the history of previous splits.

5.2.3 The P-Tree [Jagadish 1990c]. In
many applications, intervals are not a
good approximation of the data objects
enclosed. In order to combine the flexi-
bility of polygon-shaped containers with
the simplicity of the R-tree, Jagadish
[1990c] and Schiwietz [1993] indepen-
dently proposed different variations of
polyhedral trees or P-trees. To distin-
guish the two structures, we refer to the
P-tree of Jagadish [1990c] as the JP-tree
and to the P-tree of Schiwietz [1993] as
the SP-tree.

The JP-tree first introduces a variable
number m of orientations in the d-di-
mensional universe, where m . d. For
instance, in two dimensions (d 5 2) we
may have four orientations (m 5 4):
two parallel to the coordinate axes (i.e.,
iso-oriented) and two parallel to the two
main diagonals. Objects are approxi-
mated by minimum bounding polytopes
whose faces are parallel to these m ori-
entations. Clearly, the quality of the
approximations is positively correlated
with m. We can now map the original
space into an m-dimensional orientation
space, such that each (d-dimensional)
approximating polytope Pd turns into
an m-dimensional interval Im. Any
point inside (outside) Pd maps onto a
point inside (outside) Im, whereas the
opposite is not necessarily true. To
maintain the m-dimensional intervals,
a large selection of SAMs is available;
Jagadish [1990c] suggests the R-tree or
R1-tree (cf. Section 5.3.2) for this pur-
pose.

An interesting feature of the JP-tree
is the ability to add hyperplanes to the
attribute space dynamically without
having to reorganize the structure. By
projecting the new intervals of the ex-
tended orientation space onto the old
orientation space, it is still possible to
use the old structure. Consequently, we
can obtain an R-tree from a higher-
dimensional JP-tree structure by drop-

208 • V. Gaede and O. Günther

ACM Computing Surveys, Vol. 30, No. 2, June 1998

ping all hyperplanes that are not iso-
oriented.

The interior nodes of the JP-tree rep-
resent a hierarchy of nested polytopes,
similar to the R-tree or the cell tree (cf.
Section 5.3.3). Polytopes corresponding
to different nodes at the same tree level
may overlap. For search operations we
first compute the minimum bounding
polytope of the search region and map it
onto an m-dimensional interval. The
search efficiency then depends on the
chosen PAM. The same applies for dele-
tion.

The introduction of additional hyper-
planes yields a better approximation,
but it increases the size of the entries,
thus reducing the fanout of the interior
nodes. Experiments reported by Jagad-
ish [1990c] suggest that a 10-dimen-
sional orientation space (m 5 10) is a
good choice for storing 2-dimensional
lines (d 5 2) with arbitrary orientation.
This needs to be compared to a simple
MBB approach. Although the latter
technique may sometimes render poor
approximations, the representation re-
quires only four numbers per line. Stor-
ing a 10-dimensional interval, on the
other hand, requires 20 numbers, that
is, five times as many. Another draw-
back of the JP-tree is the fixed orienta-
tion of the hyperplanes. Figure 32
shows the running example for m 5 4.

To overcome the problem of poor fil-
tering, Brodsky et al. [1995] proposed
methods for effectively computing a set
of optimal axes for separating polyhe-

dra. This work continues the line of
work by Jagadish [1990c] in the use of
nonstandard axes for better filtering.

5.2.4 The P-Tree [Schiwietz 1993]. The
P-Tree of Schiwietz, here called the SP-
tree, chooses a slightly different ap-
proach for storing polygonal objects that
tries to combine the advantages of the
cell tree and the R*-tree for the two-
dimensional case, while avoiding the
drawbacks of both methods. Basically,
the SP-tree is an R-tree whose interior
nodes correspond to a nesting of poly-
topes rather than just rectangles. In
general, the number of vertices (and
therefore the storage requirements) of a
polytope are not bounded. Moreover,
when used for approximating other ob-
jects, the accuracy of the approximation
is positively correlated with the number
of vertices of the approximating convex
polygon. On the other hand, when used
as index entries, there should be an
upper bound in order to guarantee a
minimum fanout of the interior nodes.
To determine a reasonably good compro-
mise between these conflicting objec-
tives, extensive investigations have
been conducted by Brinkhoff et al.
[1993a] and Schiwietz [1993]. According
to these studies, pentagons or hexagons
seem to offer the best tradeoff between
storage requirements and approxima-
tion quality.

If node splittings or insertions lead to
additional vertices such that some
bounding polygons have more vertices

Figure 32. P-tree [Jagadish 1990c].

Multidimensional Access Methods • 209

ACM Computing Surveys, Vol. 30, No. 2, June 1998

than the threshold, the surplus vertices
are removed one by one. This leads to a
larger area and therefore to a decrease
of the quality of the approximation. To
reduce overlap between the convex con-
tainers, Schiwietz suggests using a
method similar to the R*-tree. Further-
more, in order to save storage space and
to improve storage utilization, it is pos-
sible to restrict the number of orienta-
tions for the polygon edges (similar to
the JP-tree).

Figure 33 shows the SP-tree for the
running example. To our knowledge, no
performance results have been reported
so far for either of the two P-trees.

5.2.5 The SKD-Tree [Ooi et al. 1987;
Ooi 1990]. A variant of the k-d-tree ca-
pable of storing spatially extended ob-
jects is the spatial k-d-tree or skd-tree.
The skd-tree allows regions to overlap.
To keep track of the mutual overlap, we
store an upper and a lower bound with
each discriminator, representing the
maximal extent of the objects in the two
subtrees. For example, consider the
splitting hyperplane (discriminator) hx1
depicted in Figure 34 and its upper and
lower bounds bx1 and bx2, respectively.
The solid lines are the splitting hyper-
planes and the dashed lines represent
the upper and lower bounds of the cor-
responding subtrees. m3 is the rectan-
gle closest to hx1 without crossing it,
thus determining the maximum extent
bx1 of the objects in the left (lower)
subspace. Similarly, m5 determines the
minimum extent bx2 for the right (up-

per) subspace. If none of the objects
placed in the corresponding subspace
crosses the splitting hyperplane, the
lower bound of the upper interval is
greater than the discriminator, and the
upper bound of the lower interval is less
than dk. Leaf nodes of the binary tree
contain the minimal bounds (dotted
lines) of the objects in the corresponding
data page.

Prior to inserting an object o, we de-
termine its centroid and its MBB. By
comparing the centroid with the stored
discriminators, we determine the next
child to be inspected. Note that there is
no ambiguity. During insertion, we have
to adjust the upper and lower bounds
for extended objects accordingly. Upon
reaching the data node level, we test
whether there is enough space available
to accommodate the object. If so, we
insert the object; otherwise we split the
data node and insert the new discrimi-
nator into the skd-tree. Likewise, the
bounds of the new subspaces need to be
adjusted.

As usual, searching starts at the root
and corresponds to a top-down tree tra-
versal. At each interior node we check
the discriminator and the boundaries to
decide which child(ren) to visit next.

Deleting an object starts with an ex-
act match query to determine the cor-
rect leaf node. If a deletion causes an
underflow, we insert the remaining en-
tries into the sibling data node and re-
move the splitting hyperplane. If this
insertion results in an overflow, we split

Figure 33. P-tree [Schiwietz 1993].

210 • V. Gaede and O. Günther

ACM Computing Surveys, Vol. 30, No. 2, June 1998

the page and insert the new hyperplane
into the skd-tree. If no merge with a
sibling leaf node is possible, we delete
that leaf and its parent node. By redi-
recting the reference of the latter to its
sibling (interior) node, we extend the
subspace of the sibling. All affected en-
tries are reinserted.

According to the results reported in
Ooi [1990] and Ooi et al. [1991], the
skd-tree is competitive with the R-tree
both in storage utilization and search
efficiency.

5.2.6 The GBD-Tree [Ohsawa and
Sakauchi 1990]. The GBD-tree (gener-
alized BD-tree) is an extension of the
BD-tree [Ohsawa and Sakauchi 1983]
that allows for secondary storage man-
agement and supports the management
of extended objects. The BD-tree is a
binary tree, but the GBD-tree is a bal-
anced multiway tree that stores spatial
objects as a hierarchy of minimum
bounding boxes. Each leaf node (bucket)
stores the MBBs of those objects whose
centroids are contained in the corre-
sponding bucket region. Each interior
node stores the MBB of the (usually
overlapping) MBBs of its descendants.
The intervals are encoded using the
same DZ-expressions as described in
Section 3.2.3.

The one advantage of the GBD-tree
over the R-tree is that insertions and
deletions may be processed more effi-
ciently, due to the encoding scheme and
the placement by centroid. The latter

point enables the GBD-tree to perform
an insertion along a single path from
the root to a leaf. However, no apparent
advantage is gained in search perfor-
mance. The reported performance ex-
periments [Ohsawa and Sakauchi 1990]
compare only storage utilization and in-
sertion performance with the R-tree.
The most important comparison, that of
search performance, is omitted.

Figure 35 depicts a GBD-tree for the
running example. The partitioning on
the left-hand side shows the minimum
bounding boxes (dotted or dashed) and
the underlying intervals (Peano re-
gions).

Among the approaches similar to the
GBD-tree are an extension of the buddy
tree by Seeger [1991] and the extension
of the BANG file to handle extended
spatial objects [Freeston 1989b].

5.2.7 PLOP-Hashing [Kriegel and
Seeger 1988; Seeger and Kriegel 1988].
Piecewise linear order-preserving (PLOP)
hashing [Seeger and Kriegel 1988] is a
variant of hashing that allows the stor-
age of extended objects without trans-
forming them into points. An earlier
version of this structure [Kriegel and
Seeger 1988] was only able to handle
multidimensional point data.

PLOP-hashing partitions the universe
in a similar way to the grid file: ex-
tended objects may span more than one
directory cell. Hyperplanes extend along
the axes of the data space. For the orga-
nization of these hyperplanes, PLOP-

Figure 34. SKD-tree.

Multidimensional Access Methods • 211

ACM Computing Surveys, Vol. 30, No. 2, June 1998

hashing uses d binary trees, where d is
the dimension of the universe. Each in-
terior node of such a binary tree corre-
sponds to a (d 2 1)-dimensional iso-
oriented hyperplane. The leaf nodes
represent d-dimensional subspaces
forming slices of the universe.

Figure 36 depicts the binary trees for
both axes together with the slices
formed by them. By using the index
entries that are stored in the leaf nodes,
we can easily identify the data page for
which we are looking. To do this effi-
ciently, we have to keep the d binary
trees in main memory, similar to the
scales of the grid file. For further
speedup, the leaf nodes of each binary
tree are linked to each other. In Figure
36 this is suggested by the arrows at-
tached to the leaves of the trees. To
handle extended objects, we enlarge the
storage representation of each slice by a
lower and an upper bound. These
bounds indicate the minimum and the
maximum extension along the current
dimension of all objects stored in the
slice at hand.

Insertion is straightforward and simi-
lar to the grid file. To avoid ambiguities,
PLOP-hashing uses the centroid of the
object to determine the data bucket in
which to place the object. In the case of
node splitting and deletion we have to
adjust the respective upper and lower
bounds. It should be further noted that
PLOP-hashing can be easily modified so
that it supports clipping rather than
overlapping regions.

Analytical experiments indicate that
PLOP-hashing is superior to the R-tree
and R1-tree for uniform data distribu-
tions [Seeger and Kriegel 1988].

5.3 Clipping

Clipping-based schemes do not allow
any overlaps between bucket regions;
they have to be mutually disjoint. A
typical access method of this kind is the
R1-tree [Stonebraker et al. 1986; Sellis
et al. 1987], a variant of the R-tree that
allows no overlap between regions cor-
responding to nodes at the same tree
level. As a result, point queries follow a
single path starting at the root, which
means efficient searches.

The main problems with clipping-
based approaches relate to the insertion
and deletion of data objects. During in-
sertion, any data object that spans more
than one bucket region has to be subdi-
vided along the partitioning hyper-
planes. Eventually, several bucket en-
tries have to be created for the same
object. Each bucket stores either the
geometric description of the complete
object (object duplication) or the geo-
metric description of the corresponding
fragment with an object reference. In
any case, data about the object are dis-
persed among several data pages (span-
ning property). The resulting redun-
dancy [Orenstein 1989a,b; Günther and
Gaede 1997] may cause not only an
increase in the average search time, but

Figure 35. GBD-tree.

212 • V. Gaede and O. Günther

ACM Computing Surveys, Vol. 30, No. 2, June 1998

also an increase in the frequency of
bucket overflows.

A second problem applies to clipping-
based access methods that do not parti-
tion the complete data space. In that
case, the insertion of a new data object
may lead to the enlargement of several
bucket regions. Whenever the object (or
a fragment thereof) is passed down to a
bucket (or, in the case of a tree struc-
ture, an interior node) whose region
does not cover it, the region has to be
extended. In some cases, such an en-
largement is not possible without get-
ting an overlap with other bucket re-
gions; this is sometimes called the
deadlock problem of clipping. Because
overlap is not allowed, one has to com-
pute a new region structure, which can
become very complicated. It may in par-
ticular cause further bucket overflows
and insertions, which can lead to a
chain reaction and, in the worst case, a
complete breakdown of the structure
[Günther and Bilmes 1991]. Access
methods partitioning the complete data
space do not suffer from this problem.

A final problem concerns the splitting
of buckets. There may be situations
where a bucket (and its corresponding
region) has to be split but there is no
splitting hyperplane that splits none (or
only a few) of the objects in that bucket.
The split may then trigger other splits,
which may become problematic with in-
creasing size of the database. The more
objects are inserted, the higher the
probability of splits and the smaller the
average size of the bucket regions. New
objects are therefore split into a larger
number of smaller fragments, which
may in the worst case once again lead to
a chain reaction. To alleviate these
problems, Günther and Noltemeier
[1991] suggest storing large objects
(which are more likely to be split into a
large number of fragments) in special
buckets called oversize shelves, instead
of inserting them into the structure.

5.3.1 The Extended k-d-Tree [Mat-
suyama et al. 1984]. One of the earliest
extensions of the adaptive k-d-tree that
could handle extended objects was the

Figure 36. PLOP-hashing.

Multidimensional Access Methods • 213

ACM Computing Surveys, Vol. 30, No. 2, June 1998

extended k-d-tree. In contrast to the
skd-tree (Section 5.2.5), the extended
k-d-tree is based on clipping. Each inte-
rior tree node corresponds to a (d 2 1)-
dimensional partitioning hyperplane,
represented by the dimension (e.g., x or
y) and the splitting coordinate (the dis-
criminator). A leaf node corresponds to
a rectangular subspace and contains the
address of the data page describing that
subspace. Data pages may be referenced
by multiple leaf nodes.

To insert an object, we start at the
root of the k-d-tree. At each interior
node, we test for intersection with the
stored hyperplane. Depending on the lo-
cation of the object relative to the hyper-
plane, we either move on to the corre-
sponding child node, or we clip the
object by the hyperplane and follow
both branches. This procedure guaran-
tees that we insert the object in all
overlapping bucket regions. If a data
page cannot accommodate the addi-
tional object, we split the page by a new
hyperplane. The splitting dimension is
perpendicular to the dimension with the
greatest extension. After distributing
the entries of the data page among the
two new pages, we insert the hyper-
plane into the k-d-tree. Note that this
may in turn cause some objects to be
split, which may lead to further page
overflows. To delete an object, we have
to visit all subspaces intersecting the
object and delete the stored object iden-
tifier. If a data page is empty due to
deletion, we remove it and mark all leaf

nodes pointing to that page as NIL. No
merging of sibling nodes is performed.

Figure 37 depicts an extended k-d-
tree for the running example. Rectangle
m7 has been clipped and inserted into
two nodes. Most partitions contain one
or two additional bounding hyperplanes
(dotted lines) to provide a better local-
ization of the objects in the correspond-
ing subspace.

5.3.2 The R1-Tree [Stonebraker et al.
1986; Sellis et al. 1987]. To overcome
the problems associated with overlap-
ping regions in the R-tree, Sellis et al.
[1987] introduced an access method
called the R1-tree. Unlike the R-tree,
the R1-tree uses clipping; that is, there
is no overlap between index intervals Id

at the same tree level. Objects that in-
tersect more than one index interval
have to be stored on several different
pages. As a result of this policy, point
searches in R1-trees correspond to sin-
gle-path tree traversals from the root to
one of the leaves. They therefore tend to
be faster than the corresponding R-tree
operation. Range searches usually lead
to the traversal of multiple paths in
both structures.

When inserting a new object o, we
may have to follow multiple paths, de-
pending on the number of intersections
of the MBB Id(o) with index intervals.
During the tree traversal, Id(o) may be
split into n disjoint fragments Ii

d(o)
(øi51

n Ii
d(o) 5 Id(o)). Each fragment is

then placed in a different leaf node ni.

Figure 37. Extended k-d-tree.

214 • V. Gaede and O. Günther

ACM Computing Surveys, Vol. 30, No. 2, June 1998

Provided that there is enough space, the
insertion is straightforward. If the
bounding interval Id(o) overlaps space
that has not yet been covered, we have
to enlarge the intervals corresponding
to one or more leaf nodes. Each of these
enlargements may require considerable
effort because overlaps must be avoided.
In some rare cases, it may not be possi-
ble to increase the current intervals in
such a way that they cover the new
object without some mutual overlap
[Günther 1988; Ooi 1990]. In case of
such a deadlock, some data intervals
have to be split and reinserted into the
tree.

If a leaf node overflows it has to be
split. Node splittings work similarly to
the case of the R-tree. An important
difference, however, is that splits may
propagate not only up the tree, but also
down the tree. The resulting forced split
of the nodes below may lead to several
complications, including further frag-
mentation of the data intervals; see, for
example, the rectangles m5 and m8 in
Figure 38.

For deletion, we first locate all the
data nodes where fragments of the ob-
ject are stored and remove them. If stor-
age utilization drops below a given
threshold, we try to merge the affected
node with its siblings or to reorganize
the tree. This is not always possible,
which is the reason why the R1-tree
cannot guarantee a minimum space uti-
lization.

5.3.3 The Cell Tree [Günther 1988].
The main goal in the design of the cell
tree [Günther 1988; 1989] was to facili-
tate searches on data objects of arbi-
trary shapes, that is, especially on data
objects that are not intervals them-
selves. The cell tree uses clipping to
manage large spatial databases that
may contain polygons or higher-dimen-
sional polyhedra. It corresponds to a
decomposition of the universe into dis-
joint convex subspaces. The interior
nodes correspond to a hierarchy of
nested polytopes and each leaf node cor-
responds to one of the subspaces (Figure
39). Each tree node is stored on one disk
page.

To avoid some of the disadvantages
resulting from clipping, the convex poly-
hedra are restricted to be subspaces of a
BSP (binary space partitioning). There-
fore we can view the cell tree as a
combination of a BSP- and an R1-tree,
or as a BSP-tree mapped on paged sec-
ondary memory. In order to minimize
the number of disk accesses that occur
during a search operation, the leaf
nodes of a cell tree contain all the infor-
mation required for answering a given
search query; we load no pages other
than those containing relevant data.
This is an important advantage of the
cell tree over the R-tree and related
structures.

Before inserting a nonconvex object,
we decompose it into a number of con-
vex components whose union is the orig-

Figure 38. R1-tree.

Multidimensional Access Methods • 215

ACM Computing Surveys, Vol. 30, No. 2, June 1998

inal object. The components do not have
to be mutually disjoint. All components
are assigned the same object identifier
and inserted into the cell tree one by
one. Due to clipping, we may have to
subdivide each component into several
cells during insertion, because it over-
laps more than one subspace. Each cell
is stored in one leaf node of the cell tree.
If an insertion causes a disk page to
overflow, we have to split the corre-
sponding subspace and cell tree node
and distribute its descendants between
the two resulting nodes. Each split may
propagate up the tree.

For point searches, we start at the
root of the tree. Using the underlying
BSP partitioning, we identify the sub-
space that includes the search point and
continue the search in the correspond-
ing subtree. This step is repeated recur-
sively until we reach a leaf node, where
we examine all cells to see whether they
contain the search point. The solution
consists of those objects that contain at
least one of the cells that qualify. A
similar algorithm exists for range
searches. A performance evaluation of
the cell tree [Günther and Bilmes 1991]
shows that it is competitive with other
popular spatial access methods.

Figure 39 shows our running example
with five partitioning hyperplanes, each
of them stored in the interior nodes.
Even though the partitioning by means
of the BSP-tree offers more flexibility
than rectilinear hyperplanes, clipping

objects may be inevitable. In Figure 39,
we had to split r2 and insert the result-
ing cells into two pages.

As do all structures based on clipping,
the cell tree has to cope with the frag-
mentation of space, which becomes in-
creasingly problematic as more objects
are inserted into the tree. After some
time, most new objects will be split into
fragments during insertion. To avoid
the negative effects of this fragmenta-
tion, Günther and Noltemeier [1991]
proposed the concept of oversize shelves.
Oversize shelves are special disk pages
attached to the interior nodes of the tree
that accommodate objects which would
have been split into too many fragments
if they had been inserted regularly. The
authors propose a dynamically adjust-
ing threshold for choosing between plac-
ing a new object on an oversize shelf or
inserting it regularly. Performance re-
sults of Günther and Gaede [1997] show
substantial improvements compared to
the cell tree without oversize shelves.

5.4 Multiple Layers

The multiple layer technique can be re-
garded as a variant of the overlapping
regions approach, because data regions
of different layers may overlap. How-
ever, there are several important differ-
ences. First, the layers are organized in
a hierarchy. Second, each layer parti-
tions the complete universe in a differ-
ent way. Third, data regions within a

Figure 39. Cell tree.

216 • V. Gaede and O. Günther

ACM Computing Surveys, Vol. 30, No. 2, June 1998

layer are disjoint; that is, they do not
overlap. Fourth, the data regions do not
adapt to the spatial extensions of the
corresponding data objects.

In order to get a better understanding
of the multilayer technique, we discuss
how to insert an extended object. First,
we try to find the lowest layer in the
hierarchy whose hyperplanes do not
split the new object. If there is such a
layer, we insert the object into the cor-
responding data page. If the insertion
causes no page to overflow, we are done.
Otherwise, we must split the data re-
gion by introducing a new hyperplane
and distribute the entries accordingly.
Objects intersecting the hyperplane
have to be moved to a higher layer or an
overflow page. As the database becomes
populated, the data space of the lower
layers becomes more and more frag-
mented. As a result, large objects keep
accumulating on higher layers of the
hierarchy or, even worse, it is no longer
possible to insert objects without inter-
secting existing hyperplanes.

The multilayer approach seems to of-
fer one advantage over the overlapping
regions technique: a possibly higher se-
lectivity during searching due to the
restricted overlap of the different lay-
ers. However, there are also several dis-
advantages: the multilayer approach
suffers from fragmentation, which may
render the technique inefficient for
some data distributions; certain queries
require the inspection of all existing
layers; it is not clear how to cluster
objects that are spatially close to each
other but in different layers; and there
is some ambiguity about the layer in
which to place the object.

An early static multilayer access
method is the MX-CIF quadtree [Kedem
1982; Abel and Smith 1983; Samet
1990b]. This structure stores each ex-
tended spatial object with the quadtree
node whose associated quadrant pro-
vides the tightest fit without intersect-
ing the object. Objects within a node are
organized by means of binary trees.

Sevcik and Koudas [1996] later pro-
posed a similar SAM based on multiple

layers, called the filter tree. As in the
MX-CIF quadtree, each layer is the re-
sult of a regular subdivision of the uni-
verse. A new object is assigned to a
unique layer, depending on the object’s
position and extension. Objects within
one layer are first sorted by the Hilbert
code of their center, then packed into
data pages of a given size. Finally, the
largest Hilbert code of each data page,
together with its reference, is inserted
into a B-tree.

We continue with a detailed descrip-
tion of two dynamic SAMs based on
multiple layers.

5.4.1 The Multilayer Grid File [Six
and Widmayer 1988]. Yet another vari-
ant of the grid file capable of handling
extended objects is the multilayer grid
file (not to be confused with the multi-
level grid file of Whang and Krish-
namurthy [1985]). The multilayer grid
file consists of an ordered sequence of
grid layers. Each of these layers corre-
sponds to a separate grid file (with
freely positionable splitting hyper-
planes) that covers the whole universe.
A new object is inserted into the first
grid file in the sequence that does not
imply any clipping of the object. This is
an important difference from the twin
grid file (see Section 4.1.4), where ob-
jects can be moved freely between the
two layers. If one of the grid files is
extended by adding another splitting
hyperplane, those objects that would be
split have to be moved to another layer.
Figure 40 illustrates a multilayer grid
file with two layers for the running ex-
ample.

In the multilayer grid file, the size of
the bucket regions typically increases
within the sequence; that is, larger ob-
jects are more likely to find their final
location in later layers. If a new object
cannot be stored in any of the current
layers without clipping, a new layer has
to be allocated. An alternative is to al-
low clipping only for the last layer. Six
and Widmayer claim that d 1 1 layers
are sufficient to store a set of d-dimen-

Multidimensional Access Methods • 217

ACM Computing Surveys, Vol. 30, No. 2, June 1998

sional intervals without clipping if the
hyperplanes are cleverly chosen.

For an exact match query, we can
easily determine from the scales which
grid file in the sequence is supposed to
hold the search interval. Other search
queries, in particular point and range
queries, are answered by traversing the
sequence of layers and performing a cor-
responding search on each grid file. The
performance results reported by Six and
Widmayer [1988] suggest that the mul-
tilayer grid file is superior to the con-
ventional grid file, using clipping to
handle extended objects. Possible disad-
vantages of the multilayer grid file in-
clude low storage utilization and expen-
sive directory maintenance.

5.4.2 The R-File [Hutflesz et al.
1990]. To overcome some of the prob-
lems of the multilayer grid file, Hutflesz
et al. [1990] proposed an alternative
structure for managing sets of rectan-
gles called the R-file; see Figure 41 for
an example. In order to avoid the low
storage utilization of the multilayer grid
file, the R-file uses a single directory.
The universe is partitioned similarly to
the BANG file: splitting hyperplanes
cut the universe recursively into equal
parts, and z-ordering is used to encode
the resulting bucket regions. In contrast
to the BANG file, however, there are no
excisions. Bucket regions may overlap,
and there is no clipping. Each data in-
terval is stored in the bucket with the
smallest region that contains it entirely;

overflow pages may be necessary in
some cases.

An interesting feature of the R-file is
its splitting algorithm. Rather than cut-
ting a bucket region into two halves, we
retain the original bucket region and
create a new bucket for one of the two
halves of that original region. Data in-
tervals are then assigned to the new
bucket if and only if they are completely
contained in the corresponding region.
The half is chosen in such a way that
the distribution of data intervals be-
tween the two resulting buckets is most
even. Once a region has been split, it
may subsequently be split again, using
the same algorithm. Since objects that
are located near the middle of the uni-
verse are likely to intersect the parti-
tioning hyperplanes, they are often as-
signed to the cell region corresponding
to the whole universe. Thus objects in
that cell tend to cluster near the split-
ting hyperplanes (cf. rectangle r5 in Fig-
ure 41).

To avoid searching dead space, the
R-file maintains minimum enclosing
boxes of the stored objects, called search
regions. As shown by Hutflesz et al.
[1990], this feature, together with the
z-encoding of the partitions, make the
R-file competitive to the R-tree. One
drawback of the R-file is the fact that it
partitions the entire space, whereas the
R-tree indexes only the part of the uni-
verse that contains objects. For data
distributions that are nonuniform, the

Figure 40. Multilayer grid file.

218 • V. Gaede and O. Günther

ACM Computing Surveys, Vol. 30, No. 2, June 1998

R-file therefore often performs poorly.
This disadvantage is something that the
R-file shares with the grid file. Wid-
mayer [1991] also notes that the R-file
is “algorithmically complicated.”

6. COMPARATIVE STUDIES

In this section, we give a brief overview
of theoretical and experimental results
on the comparison of different access
methods. Unfortunately, the number of
such evaluations, especially theoretical
analyses, is rather limited.

Greene [1989] compares the search
performance of the R-tree, the k-d-B-
tree, and the R1-tree for 10,000 uni-
formly distributed rectangles of varying
size. Query parameters include the size
of the query rectangles and the page
size. Greene’s study shows that the k-d-
B-tree can never really compete with
the two R-tree variants. On the other
hand, there is not much difference be-
tween the R1-tree and the R-tree, even
though the former is significantly more
difficult to code. As expected, the R1-

tree performs better when there is less
overlap between the data rectangles.

Kriegel et al. [1990] present an exten-
sive experimental study of access-
method performance for a variety of
point distributions. The study involves
four point access methods: the hB-tree,
the BANG file, the two-level grid file,
and the buddy tree. The authors decided
not to include PLOP-hashing since its
performance suffers considerably for
nonuniform data. The zkdB1-tree of
Orenstein and Merrett [1984] was also
not included since the authors consid-
ered both the BANG file and the hB-
tree as improvements of that strategy.
Finally, Kriegel et al. did not include
quantile hashing although they claim
[Kriegel and Seeger 1987, 1989] that
this structure is very efficient for non-
uniform data.

According to the benchmarks, the
buddy tree and, to some degree, the
BANG file outperform all other struc-
tures. The reported results show in an
impressive way how the performance of

Figure 41. R-file.

Multidimensional Access Methods • 219

ACM Computing Surveys, Vol. 30, No. 2, June 1998

the access methods studied varies with
different data distributions and query
range sizes. For clustered data and a
query range of size 10% of the size of
the universe, there is almost no perfor-
mance difference between the buddy
tree and the BANG file. If the size of the
query range drops to only 0.1% of the
size of the universe; however, the buddy
tree performs about twice as fast.

For extended objects, Kriegel et al.
[1990] compared the R-tree and PLOP-
hashing with the buddy tree and the
BANG file. The latter two techniques
were enhanced by the transformation
technique to handle rectangles. Once
again, the buddy tree and the BANG file
outperformed the other two access
methods for nearly all data distribu-
tions. Note that the benchmarks mea-
sured only the number of page accesses
but not the CPU time.

Beckmann et al. [1990] compared the
R*-tree with several variants of the R-
tree for a variety of data distributions.
Besides the performance of the different
structures for point, intersection, and
enclosure queries for varying query re-
gion sizes, they also compared spatial
join performance. The R*-tree is the
clear winner for all data distributions
and queries, and it also has the best
storage utilization and insertion times.
A comparison for point data confirms
these results. Similarly to previous per-
formance measurements, only the num-
ber of disk accesses is measured. A re-
lated study by Kamel and Faloutsos
[1994] finds even better search results
for the Hilbert R-tree, whereas updates
take about the same time as for the
R*-tree. The impact of global clustering
on the search performance of the R*-
tree was investigated by Brinkhoff and
Kriegel [1994]. Kamel et al. [1996] use
Hilbert codes for bulk insertion into dy-
namic R*-trees.

Seeger [1991] studied the relative
performance of clipping, overlapping re-
gions, and transformation techniques
implemented on top of the buddy tree.
He also included the two-level grid file
and the R*-tree in the comparison. The

buddy tree with clipping and the grid
file failed completely for certain distri-
butions, since they produced unmanage-
ably large files. The transformation
technique supports fast insertions at
the expense of low storage utilization.
The R*-tree, on the other hand, requires
fairly long insertion times but offers
good storage utilization. For intersec-
tion and containment queries, the
buddy tree combined with overlapping
regions is continuously superior to the
buddy tree with transformation. The
performance advantage of the overlap-
ping regions technique decreases for
larger query regions, even though the
buddy tree with transformation never
outperforms the buddy tree with over-
lapping regions. When the data set con-
tains uniformly distributed rectangles
of varying size, the buddy tree with
clipping outperforms the other tech-
niques for intersection and enclosure
queries. For some queries the buddy
tree with overlapping performs slightly
better than the R*-tree.

Ooi [1990] compares a static and a
dynamic variant of the skd-tree with
the packed R-tree described by Rousso-
poulos and Leifker [1985]. For large
page sizes, the skd-tree clearly outper-
forms the R-tree in terms of page ac-
cesses per search operation. The space
requirements of the skd-tree, however,
are higher than those of the R-tree.
Since the skd-tree stores the extended
objects by their centroids, containment
queries are answered more efficiently
than by the R-tree. This behavior is
clearly reflected in the performance re-
sults. A comparison with the extended
k-d-tree, enhanced by overflow pages,
suggests that the skd-tree is superior,
although the extended k-d-tree (which
is based on clipping) performs rather
well for uniformly distributed data.

Günther and Bilmes [1991] compare
the R-tree to two clipping-based access
methods, the cell tree and the R1-tree.
Unlike most studies, the data sets con-
sist of convex polygons instead of just
rectangles. The cell tree requires up to
twice as much space as its competitors.

220 • V. Gaede and O. Günther

ACM Computing Surveys, Vol. 30, No. 2, June 1998

However, the average number of page
accesses per search operation is less
than for the other two access methods.
Moreover, this advantage tends to in-
crease with the size of the database and
the size of the query regions. Besides
measurements on the number of page
faults, CPU time measurements are
also given.

Günther and Gaede [1997] compare
the original cell tree as presented by
Günther [1989] with the cell tree with
oversize shelves [Günther and Nolte-
meier 1991], the R*-tree [Beckmann et
al. 1990], and the hB-tree [Lomet and
Salzberg 1989] for some real carto-
graphic data. There is a slight perfor-
mance advantage of the cell tree with
oversize shelves compared to the R*-
tree and the hB-tree, but a major differ-
ence from the original cell tree. An ear-
lier comparison using artificially
generated data can be found in Günther
[1991]. Both studies suggest that over-
size shelves may lead to significant im-
provements for access methods with
clipping.

Oosterom [1990] compares the query
times of his KD2B-tree and the sphere
tree with the R-tree for different que-
ries. The KD2B-tree is a paged version
of the KD2-tree, which in turn is a
variant of the BSP-tree. The two struc-
tures differ in two aspects: each interior
node stores two iso-oriented lines to al-
low for overlap and gaps, and the corre-
sponding partition lines do not clip; that
is, an object is handled as a unit. The
KD2B-tree outperforms the R-tree for
all queries, whereas the sphere tree is
inferior to the R-tree.

Hoel and Samet [1992] compare the
performance of the PMR-quadtree [Nel-
son and Samet 1987], the R*-tree, and
the R1-tree for indexing line segments.
The R1-tree shows the best insertion
performance, whereas the R*-tree occu-
pies the least space. However, the inser-
tion behavior of the R1-tree heavily de-
pends on the page size, unlike the PMR-
quadtree. The performance of all
structures compared is about the same,
even though the PMR-quadtree shows

some slight performance benefits. Al-
though the R*-tree is more compact
than the other structures, its search
performance is not as good as that of
the R1-tree for line segments. Unfortu-
nately, Hoel and Samet do not report
the overall performance times for the
different queries.

Peloux et al. [1994] carried out a sim-
ilar performance comparison of two
quadtree variants, a variant of the R1-
tree, and the R*-tree. What makes their
study different is that all structures
have been implemented on top of a com-
mercial object-oriented system using
the application programmer interface. A
further difference to Hoel and Samet
[1992] is that Peloux et al. used poly-
gons rather than line segments as test
data. Furthermore, they report the var-
ious times for index traversal, loading
polygons, and the like. Besides showing
that the R1-tree and a quadtree variant
based on Hierarchical EXCELL [Tam-
minen 1983] outperform the R*-tree for
point queries, they clearly demonstrate
that the database system must provide
some means for physical clustering.
Otherwise, reading a single index page
may induce several page faults.

Smith and Gao [1990] compare the
performance of a variant of the zkdB1-
tree, the grid file, the R-tree, and the
R1-tree for insertions, deletions, and
search operations. They also measured
storage utilization. The conclusion of
their experiments is that z-ordering and
the grid file perform well for insertions
and deletions but deliver poor search
performance. R- and R1-trees, in con-
trast, offer moderate insertion and dele-
tion performance but superior search
performance. Although the R1-tree per-
forms slightly better than the R-tree for
search operations, the authors conclude
that the R1-tree is not a good choice for
general-purpose applications, due to its
potentially poor space utilization.

Hutflesz et al. [1990] showed that the
R-file has a 10 to 20% performance ad-
vantage over the R-tree on a data set
containing 48,000 rectangles with a
high degree of overlap (each point in the

Multidimensional Access Methods • 221

ACM Computing Surveys, Vol. 30, No. 2, June 1998

database was covered by 5.78 rectangles
on the average).

Further experimental studies on the
R-tree and related structures can be
found in Frank and Barrera [1989], Ka-
mel and Faloutsos [1992], and Kolovson
and Stonebraker [1991].

Since the splitting of data buckets is
an important operation in many struc-
tures, Henrich and Six [1991] studied
several split strategies. Their theoreti-
cal analysis is verified by means of the
LSD-tree. They also provide some per-
formance results for the R-tree that
uses their splitting strategy in compari-
son to the otherwise unchanged R-tree.
An empirical performance comparison
of the R-tree with an improved variant
of z-hashing, called layered z-hashing or
lz-hashing [Hutflesz et al. 1988a], can
be found in Hutflesz et al. [1991]. The
proposed structure needs significantly
less seek operations than the R-tree;
average storage utilization is higher.

Jagadish [1990a] studies the proper-
ties of different space-filling curves (z-
ordering, Gray-coding, and Hilbert-
curve). By means of theoretical
considerations as well as by experimen-
tal tests, he concludes that the Hilbert
mapping from multidimensional space
to a line is superior to other space-
filling curves. These results are in ac-
cordance with those of Abel and Mark
[1990].

When trying to summarize all those
experimental comparisons, the follow-
ing multidimensional access methods
seem to be among the best-performing
ones (in alphabetical order):

—buddy (hash) tree [Seeger and Kriegel
1990],

—cell tree with oversize shelves
[Günther and Gaede 1997],

—Hilbert R-tree [Kamel and Faloutsos
1994],

—KD2B-tree [Oosterom 1990],
—PMR-quadtree [Nelson and Samet

1987],
—R1-tree [Sellis et al. 1987], and
—R*-tree [Beckmann et al. 1990]

It cannot be emphasized enough, how-
ever, that any such ranking needs to be
used with great care. Clever program-
ming can often make up for inherent
deficiencies of an access method and
vice versa. Other factors of unpredict-
able impact include the hardware used,
the buffer size/page size, and the data
sets. Note also that our list does not
take into account access methods for
which no comparative analyses have
been published.

As the preceding discussion shows,
although numerous experimental stud-
ies exist, they are hardly comparable.
Theoretical studies may bring some
more objectivity to this discussion. The
problem with such studies is that they
are usually very hard to perform if one
wants to stick to realistic modeling as-
sumptions. For that reason there are
only a few theoretical results on the
comparison of multidimensional access
methods.

Regnier [1985] and Becker [1992] in-
vestigated the grid file and some of its
variants. The most complete theoretical
analysis of range trees can be found in
Overmars et al. [1990] and Smid and
Overmars [1990]. Günther and Gaede
[1997] present a theoretical analysis of
the cell tree. Recent analyses show that
the theory of fractals seems to be partic-
ularly suitable for modeling the behav-
ior of SAMs if the data distribution is
nonuniform.3

Some more analytical work exists on
the R-tree and related methods. A com-
parison of the R-tree and the R1-tree
has been published by Faloutsos et al.
[1987]. Recently, Pagel et al. [1993a]
presented an interesting probabilistic
model of window query performance for
the comparison of different access meth-
ods independent of implementation de-
tails. Among other things, their model
reveals the importance of the perimeter
as a criterion for node splitting, which
has been intuitively anticipated by the

3 See Faloutsos and Kamel [1994], Belussi and
Faloutsos [1995], Faloutsos and Gaede [1996], and
Papadopoulos and Manolopoulos [1997].

222 • V. Gaede and O. Günther

ACM Computing Surveys, Vol. 30, No. 2, June 1998

inventors of the R*-tree [Beckmann et
al. 1990]. The central formula of Pagel
et al. [1993] to compute the number of
disk accesses in an R-tree has been
found independently by Kamel and Fa-
loutsos [1993]. Faloutsos and Kamel
[1994] later refined this formula by us-
ing properties of the data set. More
recently, Theodoridis and Sellis [1996]
proposed a theoretical model to deter-
mine the number of disk accesses in an
R-tree that requires only two parame-
ters: the amount of data and the density
in the data space. Their model also ex-
tends to nonuniform distributions.

In pursuit of an implementation-inde-
pendent comparison criterion for access
methods, Pagel et al. [1995] suggest us-
ing the degree of clustering. As a lower
bound they assume the optimal cluster-
ing of the static situation, that is, if the
complete data set has been exposed be-
forehand. Incidentally, the significance
of clustering for access methods has
been demonstrated in numerous empir-
ical investigations as well.4

In the area of constraint database
systems (see Gaede and Wallace [1997]
for a recent survey) a number of inter-
esting papers related to multidimen-
sional access methods have been pub-
lished. Kanellakis et al. [1993], for
example, presented a semidynamic struc-
ture that guarantees certain worst-case
bounds for space, search, and insertion.
Subramanian and Ramaswamy [1995]
and Hellerstein et al. [1997] comple-
ment this work by proving some impor-
tant lower and upper bounds. Sexton
[1997] and Stuckey [1997] look at index-
ing from a language point of view. Their
work can be regarded as a generaliza-
tion of work by Hellerstein et al. [1995],
who proposed a generic framework for
modeling hierarchical access methods.

7. CONCLUSIONS

Research in spatial database systems
has resulted in a multitude of spatial

access methods. Even for experts it be-
comes more and more difficult to recog-
nize their merits and weaknesses, since
every new method seems to claim supe-
riority to at least one access method
previously published. This survey did
not try to resolve this problem but
rather to give an overview of the pros
and cons of a variety of structures. It
will come as no surprise to the reader
that at present no access method has
proven itself superior to all its competi-
tors in whatever sense. Even if one
benchmark declares one structure as
the clear winner, another benchmark
may prove the same structure inferior.

But why are such comparisons so dif-
ficult? Because there are so many differ-
ent criteria to define optimality, and so
many parameters that determine per-
formance. Both time and space effi-
ciency of an access method strongly de-
pend on the data processed and the
queries asked. An access method that
performs reasonably well for iso-ori-
ented rectangles may fail for arbitrarily
oriented lines. Strongly correlated data
may render an otherwise fast access
method irrelevant for any practical ap-
plication. An index that has been opti-
mized for point queries may be highly
inefficient for arbitrary region queries.
Large numbers of insertions and dele-
tions may deteriorate a structure that is
efficient in a more static environment.

The initiative of Kriegel et al. [1990]
to set up a standardized testbed for
benchmarking and comparing access
methods under different conditions was
an important step in the right direction.
The world wide web provides a conve-
nient infrastructure to access and dis-
tribute such benchmarks [Günther et
al. 1988]. Nevertheless, it remains far
from easy to compare or rank different
access methods. Experimental bench-
marks need to be studied with care and
can only be a first indicator for usabil-
ity.

When it comes to technology transfer,
that is, to the use of access methods in
commercial products, most vendors re-
sort to structures that are easy to un-

4 See Jagadish [1990a], Kamel and Faloutsos
[1993], Brinkhoff and Kriegel [1994], Kumar
[1994b], and Ng and Han [1994].

Multidimensional Access Methods • 223

ACM Computing Surveys, Vol. 30, No. 2, June 1998

derstand and implement. Quadtrees in
SICAD [Siemens Nixdorf Informations-
systeme AG 1997] and Smallworld GIS
[Newell and Doe 1997], R-trees in Infor-
mix [Informix Inc. 1997], and Z-ordering
in Oracle [Oracle Inc. 1995] are typical
examples. Performance seems to be of
minor importance in the selection,
which comes as no surprise given the
relatively small differences among
methods in virtually all published anal-
yses. Rather, the tendency is to take a
structure that is simple and robust and
to optimize its performance by a highly
tuned implementation and tight inte-
gration with other system components.

Nevertheless, the implementation
and experimental evaluation of access
methods is essential as it often reveals
deficiencies and problems that are not
obvious from the design or a theoretical
model. In order to make such compara-
tive evaluations both easier to perform
and easier to verify, it is essential to
provide platform-independent access to
the implementations of a broad variety
of access methods. Some extensions of
the World Wide Web, including our own
MMM project [Günther et al. 1997],
may provide the right technological
base for such a paradigm change. Once
every published paper includes a URL
(uniform resource locator), that is, an
Internet address that points to an im-
plementation, possibly with a standard-
ized user interface, transparency will
increase substantially. Until then, most
users will have to rely on general wis-
dom and their own experiments to se-
lect an access method that provides the
best fit for their current application.

ACKNOWLEDGMENTS

While working on this survey, we had the plea-
sure of discussions with many colleagues. Special
thanks go to D. Abel, A. Buchmann, C. Faloutsos,
A. Frank, M. Freeston, J. C. Freytag, J. Heller-
stein, C. Kolovson, H.-P. Kriegel, J. Nievergelt, J.
Orenstein, P. Picouet, W.-F. Riekert, D. Rotem,
J.-M. Saglio, B. Salzberg, H. Samet, M. Schiwietz,
R. Schneider, M. Scholl, B. Seeger, T. Sellis, A. P.
Sexton, and P. Widmayer. We would also like to

thank the referees for their detailed and insight-
ful comments.

REFERENCES

ABEL, D. J. AND MARK, D. M. 1990. A compara-
tive analysis of some two-dimensional order-
ings. Int. J. Geograph. Inf. Syst. 4, 1, 21–31.

ABEL, D. J. AND SMITH, J. L. 1983. A data struc-
ture and algorithm based on a linear key for a
rectangle retrieval problem. Comput. Vis. 24,
1–13.

ANG, C. AND TAN, T. 1997. New linear node
splitting algorithm for R-trees. In Advances in
Spatial Databases, M. Scholl and A. Voisard,
Eds., LNCS, Springer-Verlag, Berlin/Heidel-
berg/New York.

AREF, W. G. AND SAMET, H. 1994. The spatial
filter revisited. In Proceedings of the Sixth
International Symposium on Spatial Data
Handling, 190–208.

BAYER, R. 1996. The universal B-tree for multi-
dimensional indexing. Tech. Rep. I9639,
Technische Universität München, Munich,
Germany. http://www.leo.org/pub/comp/doc/
techreports/tum/informatik/report/1996/TUM-
I9639.ps.gz.

BAYER, R. AND MCCREIGHT, E. M. 1972. Organi-
zation and maintenance of large ordered indi-
ces. Acta Inf. 1, 3, 173–189.

BAYER, R. AND SCHKOLNICK, M. 1977. Concur-
rency of operations on B-trees. Acta Inf. 9,
1–21.

BECKER, B., FRANCIOSA, P., GSCHWIND, S., OHLER,
T., THIEM, F., AND WIDMAYER, P. 1992. En-
closing many boxes by an optimal pair of
boxes. In Proceedings of STACS’92, A. Finkel
and M. Jantzen, Eds., LNCS 525, Springer-
Verlag, Berlin/Heidelberg/New York, 475–486.

BECKER, L. 1992. A new algorithm and a cost
model for join processing with the grid file.
Ph.D. thesis, Universität-Gesamthochschule
Siegen, Germany.

BECKMANN, N., KRIEGEL, H.-P., SCHNEIDER, R., AND
SEEGER, B. 1990. The R*-tree: An efficient
and robust access method for points and rect-
angles. In Proceedings of ACM SIGMOD In-
ternational Conference on Management of
Data, 322–331.

BELUSSI, A. AND FALOUTSOS, C. 1995. Esti-
mating the selectivity of spatial queries using
the ‘correlation’ fractal dimension. In Proceed-
ings of the 21st International Conference on
Very Large Data Bases, 299–310.

BENTLEY, J. L. 1975. Multidimensional binary
search trees used for associative searching.
Commun. ACM 18, 9, 509–517.

BENTLEY, J. L. 1979. Multidimensional binary
search in database applications. IEEE Trans.
Softw. Eng. 4, 5, 333–340.

BENTLEY, J. L. AND FRIEDMAN, J. H. 1979. Data

224 • V. Gaede and O. Günther

ACM Computing Surveys, Vol. 30, No. 2, June 1998

structures for range searching. ACM Comput.
Surv. 11, 4, 397–409.

BERCHTOLD, S., KEIM, D., AND KRIEGEL, H.-P.
1996. The X-tree: An index structure for
high-dimensional data. In Proceedings of the
22nd International Conference on Very Large
Data Bases, (Bombay) 28–39.

BLANKEN, H., IJBEMA, A., MEEK, P., AND VAN DEN

AKKER, B. 1990. The generalized grid file:
Description and performance aspects. In Pro-
ceedings of the Sixth IEEE International Con-
ference on Data Engineering, 380–388.

BRINKHOFF, T. 1994. Der spatial join in geo-
datenbanksystemen. Ph.D. Thesis, Ludwig-
Maximilians-Universität München. Germany
(in German).

BRINKHOFF, T. AND KRIEGEL, H.-P. 1994. The
impact of global clustering on spatial data-
base systems. In Proceedings of the Twentieth
International Conference on Very Large Data
Bases, 168–179.

BRINKHOFF, T., KRIEGEL, H.-P., AND SCHNEIDER, R.
1993a. Comparison of approximations of
complex objects used for approximation-based
query processing in spatial database systems.
In Proceedings of the Ninth IEEE Interna-
tional Conference on Data Engineering, 40–
49.

BRINKHOFF, T., KRIEGEL, H.-P., AND SEEGER, B.
1993b. Efficient processing of spatial joins
using R-trees. In Proceedings of ACM SIG-
MOD International Conference on Manage-
ment of Data, 237–246.

BRINKHOFF, T., KRIEGEL, H.-P., SCHNEIDER, R., AND

SEEGER, B. 1994. Multi-step processing of
spatial joins. In Proceedings of the ACM SIG-
MOD International Conference on Manage-
ment of Data, 197–208.

BRODSKY, A., LASSEZ, C., LASSEZ, J.-L., AND MAHER,
M. J. 1995. Separability of polyhedra for
optimal filtering of spatial and constraint
data. In Proceedings of the Fourteenth ACM
SIGACT–SIGMOD–SIGART Symposium on
Principles of Database Systems (San Jose,
CA), 54–64.

BURKHARD, W. 1984. Index maintenance for
non-uniform record distributions. In Proceed-
ings of the Third ACM SIGACT–SIGMOD
Symposium on Principles of Database Sys-
tems, 173–180.

BURKHARD, W. A. 1983. Interpolation-based in-
dex maintenance. BIT 23, 274–294.

CHEN, L., DRACH, R., KEATING, M., LOUIS, S.,
ROTEM, D., AND SHOSHANI, A. 1995. Access
to multidimensional datasets on tertiary stor-
age systems. Inf. Syst. 20, 2, 155–183.

COMER, D. 1979. The ubiquitous B-tree. ACM
Comput. Surv. 11, 2, 121–138.

DANDAMUDI, S. P. AND SORENSON, P. G. 1986.
Algorithms for BD-trees. Softw. Pract. Exper.
16, 2, 1077–1096.

DANDAMUDI, S. P. AND SORENSON, P. G. 1991.
Improved partial-match search algorithms for
BD-trees. Comput. J. 34, 5, 415–422.

EGENHOFER, M. 1989. Spatial query languages.
Ph.D. Thesis, University of Maine, Orono,
ME.

EGENHOFER, M. 1994. Spatial SQL: A query and
presentation language. IEEE Trans. Knowl.
Data Eng. 6, 1, 86–95.

EVANGELIDIS, G. 1994. The hBP-tree: A concur-
rent and recoverable multi-attribute index
structure. Ph.D. Thesis, Northeastern Univer-
sity, Boston, MA.

EVANGELIDIS, G., LOMET, D., AND SALZBERG, B.
1995. The hBP-tree: A modified hB-tree sup-
porting concurrency, recovery and node con-
solidation. In Proceedings of the 21st Interna-
tional Conference on Very Large Data Bases,
551–561.

FAGIN, R., NIEVERGELT, J., PIPPENGER, N., AND
STRONG, R. 1979. Extendible hashing: A
fast access method for dynamic files. ACM
Trans. Database Syst. 4, 3, 315–344.

FALOUTSOS, C. 1986. Multiattribute hashing us-
ing Gray-codes. In Proceedings of the ACM
SIGMOD International Conference on Man-
agement of Data, 227–238.

FALOUTSOS, C. 1988. Gray-codes for partial
match and range queries. IEEE Trans. Softw.
Eng. 14, 1381–1393.

FALOUTSOS, C. AND GAEDE, V. 1996. Analysis of
n-dimensional quadtrees using the Hausdorff
fractal dimension. In Proceedings of the 22nd
International Conference on Very Large Data
Bases, (Bombay), 40–50.

FALOUTSOS, C. AND KAMEL, I. 1994. Beyond uni-
formity and independence: Analysis of R-trees
using the concept of fractal dimension. In
Proceedings of the Thirteenth ACM SIGACT–
SIGMOD–SIGART Symposium on Principles
of Database Systems, 4–13.

FALOUTSOS, C. AND RONG, Y. 1991. DOT: A spa-
tial access method using fractals. In Proceed-
ings of the Seventh IEEE International Con-
ference on Data Engineering, 152–159.

FALOUTSOS, C. AND ROSEMAN, S. 1989. Fractals
for secondary key retrieval. In Proceedings of
the Eighth ACM SIGACT–SIGMOD–SIGART
Symposium on Principles of Database Sys-
tems, 247–252.

FALOUTSOS, C., SELLIS, T., AND ROUSSOPOULOS,
N. 1987. Analysis of object-oriented spatial
access methods. In Proceedings of the ACM
SIGMOD International Conference on Man-
agement of Data, 426–439.

FINKEL, R. AND BENTLEY, J. L. 1974. Quad
trees: A data structure for retrieval of com-
posite keys. Acta Inf. 4, 1, 1–9.

FLAJOLET, P. 1983. On the performance evalua-
tion of extendible hashing and trie searching.
Acta Inf. 20, 345–369.

Multidimensional Access Methods • 225

ACM Computing Surveys, Vol. 30, No. 2, June 1998

FRANK, A. AND BARRERA, R. 1989. The fieldtree:
A data structure for geographic information
systems. In Design and Implementation of
Large Spatial Database Systems, A. Buch-
mann, O. Günther, T. R. Smith, and Y.-F.
Wang, Eds., LNCS 409, Springer-Verlag, Ber-
lin/Heidelberg/New York, 29–44.

FREESTON, M. 1987. The BANG file: A new kind
of grid file. In Proceedings of the ACM SIG-
MOD International Conference on Manage-
ment of Data,, 260–269.

FREESTON, M. 1989a. Advances in the design of
the BANG file. In Proceedings of the Third
International Conference on Foundations of
Data Organization and Algorithms, LNCS
367, Springer-Verlag, Berlin/Heidelberg/New
York, 322–338.

FREESTON, M. 1989b. A well-behaved structure
for the storage of geometric objects. In Design
and Implementation of Large Spatial Data-
base Systems, A. Buchmann, O. Günther,
T. R. Smith, and Y.-F. Wang, Eds., LNCS 409,
Springer-Verlag, Berlin/Heidelberg/New York,
287–300.

FREESTON, M. 1995. A general solution of the
n-dimensional B-tree problem. In Proceedings
of the ACM SIGMOD International Confer-
ence on Management of Data, 80–91.

FREESTON, M. 1997. On the complexity of BV-
tree updates. In Proceedings of CDB’97 and
CP’96 Workshop on Constraint Databases and
their Application, V. Gaede, A. Brodsky, O.
Günther, D. Srivastava, V. Vianu, and M.
Wallace, Eds., LNCS 1191, Springer-Verlag,
Berlin/Heidelberg/New York, 282–293.

FUCHS, H., ABRAM, G. D., AND GRANT, E. D.
1983. Near real-time shaded display of rigid
objects. Computer Graph. 17, 3, 65–72.

FUCHS, H., KEDEM, Z., AND NAYLOR, B. 1980. On
visible surface generation by a priori tree
structures. Computer Graph. 14, 3.

GAEDE, V. 1995a. Geometric information makes
spatial query processing more efficient. In
Proceedings of the Third ACM International
Workshop on Advances in Geographic Infor-
mation Systems (ACM-GIS’95) (Baltimore,
MD) 45–52.

GAEDE, V. 1995b. Optimal redundancy in spa-
tial database systems. In Advances in Spatial
Databases, M. J. Egenhofer and J. R. Herring,
Eds., LNCS 951, Springer-Verlag, Berlin/Hei-
delberg/New York, 96–116.

GAEDE, V. AND RIEKERT, W.-F. 1994. Spatial ac-
cess methods and query processing in the
object-oriented GIS GODOT. In Proceedings
of the AGDM’94 Workshop (Delft, The Nether-
lands), Netherlands Geodetic Commission,
40–52.

GAEDE, V. AND WALLACE, M. 1997. An informal
introduction to constraint databases. In Pro-
ceedings of CDB’97 and CP’96 Workshop on
Constraint Databases and their Application,

V. Gaede, A. Brodsky, O. Günther, D. Srivas-
tava, V. Vianu, and M. Wallace, Eds., LNCS
1191, Springer-Verlag, Berlin/Heidelberg/
New York, 7–52.

GARG, A. K. AND GOTLIEB, C. C. 1986. Order-
preserving key transformation. ACM Trans.
Database Syst. 11, 2, 213–234.

GREENE, D. 1989. An implementation and per-
formance analysis of spatial data access
methods. In Proceedings of the Fifth IEEE
International Conference on Data Engineer-
ing, 606–615.

GÜNTHER, O. 1988. Efficient Structures for Geo-
metric Data Management. LNCS 337, Spring-
er-Verlag, Berlin/Heidelberg/New York.

GÜNTHER, O. 1989. The cell tree: An object-ori-
ented index structure for geometric data-
bases. In Proceedings of the Fifth IEEE Inter-
national Conference on Data Engineering,
598–605.

GÜNTHER, O. 1991. Evaluation of spatial access
methods with oversize shelves. In Geographic
Database Management Systems, G. Gambosi,
M. Scholl, and H.-W. Six, Eds., Springer-Ver-
lag, Berlin/Heidelberg/New York, 177–193.

GÜNTHER, O. 1993. Efficient computation of
spatial joins. In Proceedings of the Ninth
IEEE International Conference on Data Engi-
neering, 50–59.

GÜNTHER, O. AND BILMES, J. 1991. Tree-based
access methods for spatial databases: Imple-
mentation and performance evaluation. IEEE
Trans. Knowl. Data Eng. 3, 3, 342–356.

GÜNTHER, O. AND BUCHMANN, A. 1990. Research
issues in spatial databases. SIGMOD Rec. 19,
4, 61–68.

GÜNTHER, O. AND GAEDE, V. 1997. Oversize
shelves: A storage management technique for
large spatial data objects. Int. J. Geog. Inf.
Syst. 11, 1, 5–32.

GÜNTHER, O. AND NOLTEMEIER, H. 1991. Spatial
database indices for large extended objects. In
Proceedings of the Seventh IEEE Interna-
tional Conference on Data Engineering, 520–
526.

GÜNTHER, O., MÜLLER, R., SCHMIDT, P., BHARGAVA,
H., AND KRISHNAN, R. 1997. MMM: A
WWW-based approach for sharing statistical
software modules. IEEE Internet Comput. 1, 3.

GÜNTHER, O., ORIA, V., PICOUET, P., SAGLIO, J.-M.,
AND SCHOLL, M. 1998. Benchmarking spa-
tial joins à la carte. In Proceedings of the 10th
International Conference on Scientific and
Statistical Database Management. IEEE, New
York.

GÜTING, R. H. 1989. Gral: An extendible rela-
tional database system for geometric applica-
tions. In Proceedings of the Fifteenth Interna-
tional Conference on Very Large Data Bases,
33–44.

GÜTING, R. H. AND SCHNEIDER, M. 1993.

226 • V. Gaede and O. Günther

ACM Computing Surveys, Vol. 30, No. 2, June 1998

Realms: A foundation for spatial data types in
database systems. In Advances in Spatial Da-
tabases, D. Abel and B. C. Ooi, Eds., LNCS
692, Springer-Verlag, Berlin/Heidelberg/New
York.

GUTTMAN, A. 1984. R-trees: A dynamic index
structure for spatial searching. In Proceedings
of the ACM SIGMOD International Confer-
ence on Management of Data, 47–54.

HELLERSTEIN, J. M., KOUTSOUPIAS, E., AND PAPAD-
IMITRIOU, C. H. 1997. Towards a theory of
indexability. In Proceedings of the Sixteenth
ACM SIGACT–SIGMOD–SIGART Sympo-
sium on Principles of Database Systems.

HELLERSTEIN, J. M., NAUGHTON, J. F., AND PFEF-
FER, A. 1995. Generalized search trees for
database systems. In Proceedings of the 21st
International Conference on Very Large Data
Bases, 562–573.

HENRICH, A. 1995. Adapting the transformation
technique to maintain multidimensional non-
point objects in k-d-tree based access struc-
tures. In Proceedings of the Third ACM Interna-
tional Workshop on Advances in Geographic
Information Systems (ACM-GIS’95) (Balti-
more, MD) ACM Press, New York.

HENRICH, A. AND MÖLLER, J. 1995. Extending a
spatial access structure to support additional
standard attributes. In Advances in Spatial
Databases, M. J. Egenhofer and J. R. Herring,
Eds., LNCS 951, Springer-Verlag, Berlin/Hei-
delberg/New York, 132–151.

HENRICH, A. AND SIX, H.-W. 1991. How to split
buckets in spatial data structures. In Geo-
graphic Database Management Systems, G.
Gambosi, M. Scholl, and H.-W. Six, Eds.,
Springer-Verlag, Berlin/Heidelberg/New York,
212–244.

HENRICH, A., SIX, H.-W., AND WIDMAYER,
P. 1989. The LSD tree: Spatial access to
multidimensional point and non-point objects.
In Proceedings of the Fifteenth International
Conference on Very Large Data Bases, 45–53.

HINRICHS, K. 1985. Implementation of the grid
file: Design concepts and experience. BIT 25,
569–592.

HOEL, E. G. AND SAMET, H. 1992. A qualitative
comparison study of data structures for large
segment databases. In Proceedings of the
ACM SIGMOD International Conference on
Management of Data, 205–214.

HOEL, E. G. AND SAMET, H. 1995. Benchmark-
ing spatial join operations with spatial out-
put. In Proceedings of the 21st International
Conference on Very Large Data Bases, 606–
618.

HUTFLESZ, A., SIX, H.-W., AND WIDMAYER, P.
1988a. Globally order preserving multidi-
mensional linear hashing. In Proceedings of
the Fourth IEEE International Conference on
Data Engineering, 572–579.

HUTFLESZ, A., SIX, H.-W., AND WIDMAYER, P.

1988b. Twin grid files: Space optimizing ac-
cess schemes. In Proceedings of the ACM SIG-
MOD International Conference on Manage-
ment of Data, 183–190.

HUTFLESZ, A., SIX, H.-W., AND WIDMAYER, P.
1990. The R-file: An efficient access struc-
ture for proximity queries. In Proceedings of
the Sixth IEEE International Conference on
Data Engineering, 372–379.

HUTFLESZ, A., WIDMAYER, P., AND ZIMMERMANN, C.
1991. Global order makes spatial access
faster. In Geographic Database Management
Systems, G. Gambosi, M. Scholl, and H.-W.
Six, Eds., Springer-Verlag, Berlin/Heidelberg/
New York, 161–176.

INFORMIX INC. 1997. The DataBlade architec-
ture. URL http://www.informix.com.

JAGADISH, H. V. 1990a. Linear clustering of ob-
jects with multiple attributes. In Proceedings
of the ACM SIGMOD International Confer-
ence on Management of Data, 332–342.

JAGADISH, H. V. 1990b. On indexing line seg-
ments. In Proceedings of the Sixteenth Inter-
national Conference on Very Large Data
Bases, 614–625.

JAGADISH, H. V. 1990c. Spatial search with
polyhedra. In Proceedings of the Sixth IEEE
International Conference on Data Engineer-
ing, 311–319.

KAMEL, I. AND FALOUTSOS, C. 1992. Parallel R-
trees. In Proceedings of the ACM SIGMOD
International Conference on Management of
Data, 195–204.

KAMEL, I. AND FALOUTSOS, C. 1993. On packing
R-trees. In Proceedings of the Second Interna-
tional Conference on Information and Knowl-
edge Management, 490–499.

KAMEL, I. AND FALOUTSOS, C. 1994. Hilbert R-
tree: An improved R-tree using fractals. In
Proceedings of the Twentieth International
Conference on Very Large Data Bases, 500–
509.

KAMEL, I., KHALIL, M., AND KOURAMAJIAN, V.
1996. Bulk insertion in dynamic R-trees. In
Proceedings of the Seventh International Sym-
posium on Spatial Data Handling (Delft, The
Netherlands), 3B.31–3B.42.

KANELLAKIS, P. C., RAMASWAMY, S., VENGROFF,
D. E., AND VITTER, J. S. 1993. Indexing for
data models with constraints and classes. In
Proceedings of the Twelfth ACM SIGACT–
SIGMOD–SIGART Symposium on Principles
of Database Systems, 233–243.

KEDEM, G. 1982. The quad-CIF tree: A data
structure for hierarchical on-line algorithms.
In Proceedings of the Nineteenth Conference
on Design and Automation, 352–357.

KEMPER, A. AND WALLRATH, M. 1987. An analy-
sis of geometric modeling in database sys-
tems. ACM Comput. Surv. 19, 1, 47–91.

KLINGER, A. 1971. Pattern and search statis-

Multidimensional Access Methods • 227

ACM Computing Surveys, Vol. 30, No. 2, June 1998

tics. In Optimizing Methods in Statistics, S.
Rustagi, Ed., 303–337.

KNOTT, G. 1975. Hashing functions. Comput. J.
18, 3, 265–278.

KOLOVSON, C. 1990. Indexing techniques for
multi-dimensional spatial data and historical
data in database management systems. Ph.D.
Thesis, University of California at Berkeley.

KOLOVSON, C. AND STONEBRAKER, M. 1991. Seg-
ment indexes: Dynamic indexing techniques
for multi-dimensional interval data. In Pro-
ceedings of the ACM SIGMOD International
Conference on Management of Data, 138–147.

KRIEGEL, H.-P. 1984. Performance comparison
of index structures for multikey retrieval. In
Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data,
186–196.

KRIEGEL, H.-P., HEEP, P., HEEP, S., SCHIWIETZ, M.,
AND SCHNEIDER, R. 1991. An access method
based query processor for spatial database
systems. In Geographic Database Manage-
ment Systems, G. Gambosi, M. Scholl, and
H.-W. Six, Eds., Springer-Verlag, Berlin/Hei-
delberg/New York, 273–292.

KRIEGEL, H.-P., SCHIWIETZ, M., SCHNEIDER, R., AND
SEEGER, B. 1990. Performance comparison
of point and spatial access methods. In Design
and Implementation of Large Spatial Data-
base Systems, A. Buchmann, O. Günther,
T. R. Smith, and Y.-F. Wang, Eds., LNCS 409,
Springer-Verlag, Berlin/Heidelberg/New York,
89–114.

KRIEGEL, H.-P. AND SEEGER, B. 1986. Multi-
dimensional order preserving linear hashing
with partial expansions. In Proceedings of the
International Conference on Database Theory,
LNCS 243, Springer-Verlag, Berlin/Heidel-
berg/New York.

KRIEGEL, H.-P. AND SEEGER, B. 1987. Multi-
dimensional quantile hashing is very efficient
for non-uniform record distributions. In Pro-
ceedings of the Third IEEE International Con-
ference on Data Engineering, 10–17.

KRIEGEL, H.-P. AND SEEGER, B. 1988. PLOP-
hashing: A grid file without directory. In Pro-
ceedings of the Fourth IEEE International
Conference on Data Engineering, 369–376.

KRIEGEL, H.-P. AND SEEGER, B. 1989. Multi-
dimensional quantile hashing is very efficient
for non-uniform distributions. Inf. Sci. 48,
99–117.

KORNACKER, M. AND BANKS, D. 1995. High-con-
currency locking in R-trees. In Proceedings of
the 21st International Conference on Very
Large Data Bases, 134–145.

KUMAR, A. 1994a. G-tree: A new data structure
for organizing multidimensional data. IEEE
Trans. Knowl. Data Eng. 6, 2, 341–347.

KUMAR, A. 1994b. A study of spatial clustering
techniques. In Proceedings of the Fifth Confer-

ence on Database and Expert Systems Appli-
cations (DEXA’94), D. Karagiannis, Ed.,
LNCS 856, Springer-Verlag, Berlin/Heidel-
berg/New York, 57–70.

LARSON, P. A. 1980. Linear hashing with par-
tial expansions. In Proceedings of the Sixth
International Conference on Very Large Data
Bases, 224–232.

LEHMAN, P. AND YAO, S. 1981. Efficient locking
for concurrent operations on B-trees. ACM
Trans. Database Syst. 6, 4, 650–670.

LIN, K.-I., JAGADISH, H., AND FALOUTSOS, C.
1994. The TV-tree: An index structure for
high-dimensional data. VLDB J. 3, 4, 517–
543.

LITWIN, W. 1980. Linear hashing: A new tool
for file and table addressing. In Proceedings of
the Sixth International Conference on Very
Large Data Bases, 212–223.

LO, M. AND RAVISHANKAR, C. 1994. Spatial joins
using seeded trees. In Proceedings of the ACM
SIGMOD International Conference on Man-
agement of Data, 209–220.

LOMET, D. B. 1983. Boundex index exponential
hashing. ACM Trans. Database Syst. 8, 1,
136–165.

LOMET, D. B. 1991. Grow and post index trees:
Role, techniques and future potential. In Ad-
vances in Spatial Databases, O. Günther and
H. Schek, Eds., LNCS 525, Springer-Verlag,
Berlin/Heidelberg/New York, 183–206.

LOMET, D. B. AND SALZBERG, B. 1989. The hB-
tree: A robust multiattribute search struc-
ture. In Proceedings of the Fifth IEEE Inter-
national Conference on Data Engineering,
296–304.

LOMET, D. B. AND SALZBERG, B. 1990. The hB-
tree: A multiattribute indexing method with
good guaranteed performance. ACM Trans.
Database Syst. 15, 4, 625–658. Reprinted in
Readings in Database Systems, M. Stone-
braker, Ed., Morgan-Kaufmann, San Mateo,
CA, 1994.

LOMET, D. B. AND SALZBERG, B. 1992. Access
method concurrency with recovery. In Pro-
ceedings of the ACM SIGMOD International
Conference on Management of Data, 351–360.

LU, H. AND OOI, B.-C. 1993. Spatial indexing:
Past and future. IEEE Data Eng. Bull. 16, 3,
16–21.

MATSUYAMA, T., HAO, L. V., AND NAGAO, M. 1984.
A file organization for geographic information
systems based on spatial proximity. Int.
J. Comput. Vis. Graph. Image Process. 26, 3,
303–318.

MORTON, G. 1966. A computer oriented geodetic
data base and a new technique in file se-
quencing. IBM Ltd.

NELSON, R. AND SAMET, H. 1987. A population
analysis for hierarchical data structures. In
Proceedings of the ACM SIGMOD Interna-

228 • V. Gaede and O. Günther

ACM Computing Surveys, Vol. 30, No. 2, June 1998

tional Conference on Management of Data,
270–277.

NEWELL, R. G. AND DOE, M. 1997. Discrete ge-
ometry with seamless topology in a GIS. URL
http://www.smallworld-us.com.

NG, R. T. AND HAN, J. 1994. Efficient and effec-
tive clustering methods for spatial data min-
ing. In Proceedings of the Twentieth Interna-
tional Conference on Very Large Data Bases,
144–154.

NG, V. AND KAMEDA, T. 1993. Concurrent ac-
cesses to R-trees. In Advances in Spatial Da-
tabases, D. Abel and B. C. Ooi, Eds., LNCS
692, Springer-Verlag, Berlin/Heidelberg/New
York, 142–161.

NG, V. AND KAMEDA, T. 1994. The R-link tree: A
recoverable index structure for spatial data.
In Proceedings of the Fifth Conference on Da-
tabase and Expert Systems Applications
(DEXA’94), D. Karagiannis, Ed., LNCS 856,
Springer-Verlag, Berlin/Heidelberg/New York,
163–172.

NIEVERGELT, J. 1989. 762 criteria for assessing
and comparing spatial data structures. In De-
sign and Implementation of Large Spatial Da-
tabase Systems, A. Buchmann, O. Günther,
T. R. Smith, and Y.-F. Wang, Eds., LNCS 409,
Springer-Verlag, Berlin/Heidelberg/New York,
3–27.

NIEVERGELT, J. AND HINRICHS, K. 1987. Storage
and access structures for geometric data
bases. In Proceedings of the International
Conference on Foundations of Data Organiza-
tion, S. Ghosh, Y. Kambayashi, and K.
Tanaka, Eds., Plenum, New York.

NIEVERGELT, J., HINTERBERGER, H., AND SEVCIK, K.
1981. The grid file: An adaptable, symmetric
multikey file structure. In Proceedings of the
Third ECI Conference, A. Duijvestijn and P.
Lockemann, Eds., LNCS 123, Springer-Ver-
lag, Berlin/Heidelberg/New York, 236–251.

NIEVERGELT, J., HINTERBERGER, H., AND SEVCIK,
K. C. 1984. The grid file: An adaptable,
symmetric multikey file structure. ACM
Trans. Database Syst. 9, 1, 38–71.

OHSAWA, Y. AND SAKAUCHI, M. 1983. BD-tree: A
new n-dimensional data structure with effi-
cient dynamic characteristics. In Proceedings
of the Ninth World Computer Congress, IFIP
1983, 539–544.

OHSAWA, Y. AND SAKAUCHI, M. 1990. A new tree
type data structure with homogeneous node
suitable for a very large spatial database. In
Proceedings of the Sixth IEEE International
Conference on Data Engineering, 296–303.

OOI, B. C. 1990. Efficient Query Processing in
Geographic Information Systems. LNCS 471,
Springer-Verlag, Berlin/Heidelberg/New York.

OOI, B. C., MCDONELL, K. J., AND SACKS-DAVIS,
R. 1987. Spatial kd-tree: An indexing
mechanism for spatial databases. In Proceed-

ings of the IEEE Computer Software and Ap-
plications Conference, 433–438.

OOI, B. C., SACKS-DAVIS, R., AND MCDONELL,
K. J. 1991. Spatial indexing by binary de-
composition and spatial bounding. Inf. Syst.
J. 16, 2, 211–237.

OOSTEROM, P. 1990. Reactive data structures
for geographic information systems. Ph.D.
Thesis, University of Leiden, The Nether-
lands.

ORACLE INC. 1995. Oracle 7 multidimension:
Advances in relational database technology
for spatial data management. White paper.

ORENSTEIN, J. 1982. Multidimensional tries
used for associative searching. Inf. Process.
Lett. 14, 4, 150–157.

ORENSTEIN, J. 1983. A dynamic file for random
and sequential accessing. In Proceedings of
the Ninth International Conference on Very
Large Data Bases, 132–141.

ORENSTEIN, J. 1989a. Redundancy in spatial
databases. In Proceedings of the ACM SIG-
MOD International Conference on Manage-
ment of Data, 294–305.

ORENSTEIN, J. 1989b. Strategies for optimizing
the use of redundancy in spatial databases. In
Design and Implementation of Large Spatial
Database Systems, A. Buchmann, O. Günther,
T. R. Smith, and Y.-F. Wang, Eds., LNCS 409,
Springer-Verlag, Berlin/Heidelberg/New York,
115–134.

ORENSTEIN, J. 1990. A comparison of spatial
query processing techniques for native and
parameter space. In Proceedings of the ACM
SIGMOD International Conference on Man-
agement of Data, 343–352.

ORENSTEIN, J. AND MERRETT, T. H. 1984. A class
of data structures for associative searching.
In Proceedings of the Third ACM SIGACT–
SIGMOD Symposium on Principles of Data-
base Systems, 181–190.

ORENSTEIN, J. A. 1986. Spatial query process-
ing in an object-oriented database system. In
Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data,
326–333.

OTOO, E. J. 1984. A mapping function for the
directory of a multidimensional extendible
hashing. In Proceedings of the Tenth Interna-
tional Conference on Very Large Data Bases,
493–506.

OTOO, E. J. 1985. Symmetric dynamic index
maintenance scheme. In Proceedings of the
International Conference on Foundations of
Data Organization, Plenum, New York, 283–
296.

OTOO, E. J. 1986. Balanced multidimensional
extendible hash tree. In Proceedings of the
Fifth ACM SIGACT–SIGMOD Symposium on
Principles of Database Systems, 100–113.

OUKSEL, M. 1985. The interpolation based grid

Multidimensional Access Methods • 229

ACM Computing Surveys, Vol. 30, No. 2, June 1998

file. In Proceedings of the Fourth ACM SI-
GACT–SIGMOD Symposium on Principles of
Database Systems, 20–27.

OUKSEL, M. AND SCHEUERMANN, P. 1983. Stor-
age mappings for multidimensional linear dy-
namic hashing. In Proceedings of the Second
ACM SIGACT–SIGMOD Symposium on Prin-
ciples of Database Systems, 90–105.

OUKSEL, M. A. AND MAYER, O. 1992. A robust
and efficient spatial data structure. Acta Inf.
29, 335–373.

OVERMARS, M. H., SMID, M. H., BERG, T., AND VAN

KREVELD, M. J. 1990. Maintaining range
trees in secondary memory: Part I: Partitions.
Acta Inf. 27, 423–452.

PAGEL, B. U., SIX, H.-W., AND TOBEN, H. 1993a.
The transformation technique for spatial ob-
jects revisited. In Advances in Spatial Data-
bases, D. Abel and B. C. Ooi, Eds., LNCS 692,
Springer-Verlag, Berlin/Heidelberg/New York,
73–88.

PAGEL, B. U., SIX, H.-W., AND WINTER, M. 1995.
Window query optimal clustering of spatial
objects. In Proceedings of the Fourteenth ACM
SIGACT–SIGMOD–SIGART Symposium on
Principles of Database Systems, 86–94.

PAGEL, B. U., SIX, H.-W., TOBEN, H., AND WID-
MAYER, P. 1993b. Towards an analysis of
range query performance in spatial data
structures. In Proceedings of the Twelfth ACM
SIGACT–SIGMOD–SIGART Symposium on
Principles of Database Systems, 214–221.

PAPADIAS, D., THEODORIDIS, Y., SELLIS, T., AND

EGENHOFER, M. J. 1995. Topological rela-
tions in the world of minimum bounding rect-
angles: A study with R-trees. In Proceedings
of the ACM SIGMOD International Confer-
ence on Management of Data, 92–103.

PAPADOPOULOS, A. AND MANOLOPOULOS, Y. 1997.
Performance of nearest neighbor queries in
R-trees. In Proceedings of the International
Conference on Database Theory (ICDT’97), F.
Afrati and P. Kolaitis, Eds., LNCS 1186,
Springer-Verlag, Berlin/Heidelberg/New York,
394–408.

PELOUX, J., REYNAL, G., AND SCHOLL, M. 1994.
Evaluation of spatial indices implemented
with the O2 DBMS. Ingénièrie des Systèmes
d’Information 6.

PREPARATA, F. P. AND SHAMOS, M. I. 1985. Com-
putational Geometry. Springer-Verlag, New
York.

REGNIER, M. 1985. Analysis of the grid file algo-
rithms. BIT 25, 335–357.

ROBINSON, J. T. 1981. The K-D-B-tree: A search
structure for large multidimensional dynamic
indexes. In Proceedings of the ACM SIGMOD
International Conference on Management of
Data, 10–18.

ROTEM, D. 1991. Spatial join indices. In Pro-

ceedings of the Seventh IEEE International
Conference on Data Engineering, 10–18.

ROUSSOPOULOS, N. AND LEIFKER, D. 1984. An in-
troduction to PSQL: A pictorial structured
query language. In Proceedings of the IEEE
Workshop on Visual Languages.

ROUSSOPOULOS, N. AND LEIFKER, D. 1985. Direct
spatial search on pictorial databases using
packed R-trees. In Proceedings of the ACM
SIGMOD International Conference on Man-
agement of Data, 17–31.

SAGAN, H. 1994. Space-Filling Curves. Spring-
er-Verlag, Berlin/Heidelberg/New York.

SAMET, H. 1984. The quadtree and related hier-
archical data structure. ACM Comput. Surv.
16, 2, 187–260.

SAMET, H. 1988. Hierarchical representation of
collections of small rectangles. ACM Comput.
Surv. 20, 4, 271–309.

SAMET, H. 1990a. Applications of Spatial Data
Structures. Addison-Wesley, Reading, MA.

SAMET, H. 1990b. The Design and Analysis of
Spatial Data Structures. Addison-Wesley,
Reading, MA.

SAMET, H. AND WEBBER, R. E. 1985. Storing a
collection of polygons using quadtrees. ACM
Trans. Graph. 4, 3, 182–222.

SCHIWIETZ, M. 1993. Speicherung und anfrage-
bearbeitung komplexer geo-objekte. Ph.D. The-
sis, Ludwig-Maximilians-Universität München,
Germany (in German).

SCHNEIDER, R. AND KRIEGEL, H.-P. 1992. The
TR*-tree: A new representation of polygonal
objects supporting spatial queries and opera-
tions. In Proceedings of the Seventh Workshop
on Computational Geometry, LNCS 553,
Springer-Verlag, Berlin/Heidelberg/New York,
249–264.

SCHOLL, M. AND VOISARD, A. 1989. Thematic
map modeling. In Design and Implementation
of Large Spatial Database Systems, A. Buch-
mann, O. Günther, T. R. Smith, and Y.-F.
Wang, Eds., LNCS 409, Springer-Verlag, Ber-
lin/Heidelberg/New York.

SEEGER, B. 1991. Performance comparison of
segment access methods implemented on top
of the buddy-tree. In Advances in Spatial
Databases, O. Günther and H. Schek, Eds.,
LNCS 525, Springer-Verlag, Berlin/Heidel-
berg/New York, 277–296.

SEEGER, B. AND KRIEGEL, H.-P. 1988. Tech-
niques for design and implementation of spa-
tial access methods. In Proceedings of the
Fourteenth International Conference on Very
Large Data Bases, 360–371.

SEEGER, B. AND KRIEGEL, H.-P. 1990. The bud-
dy-tree: An efficient and robust access method
for spatial data base systems. In Proceedings
of the Sixteenth International Conference on
Very Large Data Bases, 590–601.

SELLIS, T., ROUSSOPOULOS, N., AND FALOUTSOS, C.

230 • V. Gaede and O. Günther

ACM Computing Surveys, Vol. 30, No. 2, June 1998

1987. The R1-tree: A dynamic index for
multi-dimensional objects. In Proceedings of
the Thirteenth International Conference on
Very Large Data Bases, 507–518.

SEVCIK, K. AND KOUDAS, N. 1996. Filter trees
for managing spatial data over a range of size
granularities. In Proceedings of the 22th In-
ternational Conference on Very Large Data
Bases (Bombay), 16–27.

SEXTON, A. P. 1997. Querying indexed files. In
Proceedings of the CDB’97 and CP’96 Work-
shop on Constraint Databases and Their Ap-
plication, V. Gaede, A. Brodsky, O. Günther,
D. Srivastava, V. Vianu, and M. Wallace,
Eds., LNCS 1191, Springer-Verlag, Berlin/
Heidelberg/New York, 263–281.

SHEKHAR, S. AND LIU, D.-R. 1995. CCAM: A con-
nectivity-clustered access method for aggre-
gate queries on transportation networks: A
summary of results. In Proceedings of the
Eleventh IEEE International Conference on
Data Engineering, 410–419.

SIEMENS NIXDORF INFORMATIONSSYSTEME AG
1997. URL http://www.sni.de.

SIX, H. AND WIDMAYER, P. 1988. Spatial search-
ing in geometric databases. In Proceedings of
the Fourth IEEE International Conference on
Data Engineering, 496–503.

SMID, M. H. AND OVERMARS, M. H. 1990. Main-
taining range trees in secondary memory part
II: Lower bounds. Acta Inf. 27, 453–480.

SMITH, T. R. AND GAO, P. 1990. Experimental
performance evaluations on spatial access
methods. In Proceedings of the Fourth Inter-
national Symposium on Spatial Data Han-
dling (Zürich), 991–1002.

STONEBRAKER, M. (ED.) 1994. Readings in Data-
base Systems. Morgan-Kaufmann, San Mateo,
CA.

STONEBRAKER, M., SELLIS, T., AND HANSON, E.
1986. An analysis of rule indexing imple-
mentations in data base systems. In Proceed-

ings of the First International Conference on
Expert Data Base Systems.

STUCKEY, P. 1997. Constraint search trees. In
Proceedings of the International Conference on
Logic Programming (CLP’97), L. Naish, Ed.,
MIT Press, Cambridge, MA.

SUBRAMANIAN, S. AND RAMASWAMY, S. 1995. The
P-range tree: A new data structure for range
searching in secondary memory. In Proceed-
ings of the ACM-SIAM Symposium on Discrete
Algorithms (SODA’95).

TAMMINEN, M. 1982. The extendible cell method
for closest point problems. BIT 22, 27–41.

TAMMINEN, M. 1983. Performance analysis of
cell based geometric file organisations. Int.
J. Comp. Vis. Graph. Image Process. 24, 160–
181.

TAMMINEN, M. 1984. Comment on quad- and oc-
trees. Commun. ACM 30, 3, 204–212.

THEODORIDIS, Y. AND SELLIS, T. K. 1996. A
model for the prediction of R-tree perfor-
mance. In Proceedings of the Fifteenth ACM
SIGACT–SIGMOD–SIGART Symposium on
Principles of Database Systems, 161–171.

TROPF, H. AND HERZOG, H. 1981. Multi-
dimensional range search in dynamically bal-
anced trees. Angewandte Informatik 2, 71–77.

WHANG, K.-Y. AND KRISHNAMURTHY, R. 1985.
Multilevel grid files. IBM Research Labora-
tory, Yorktown Heights, NY.

WHITE, M. 1981. N-trees: Large ordered in-
dexes for multi-dimensional space. Tech. Rep.,
Application Mathematics Research Staff, Sta-
tistical Research Division, US Bureau of the
Census.

WIDMAYER, P. 1991. Datenstrukturen für Geo-
datenbanken. In Entwicklungstendenzen bei
Datenbank-Systemen, G. Vossen and K.-U.
Witt, Eds., Oldenbourg-Verlag, Munich,
Chapter 9, 317–361 (in German).

Received August 1995; revised August 1997; accepted January 1998

Multidimensional Access Methods • 231

ACM Computing Surveys, Vol. 30, No. 2, June 1998

